
Neuron-Level Activation Learning in

Neural Networks: A Self-Configuring AI

Approach

Abstract: Neural networks traditionally use fixed activation functions (ReLU, tanh, etc.) for

all neurons, which may limit representational flexibility. We propose Self-Activating Neural

Networks (SANN), a novel architecture in which each neuron learns its own activation

function. In the proposed approach, every neuron’s activation is a parametrized piecewise-

linear function learned via gradient descent alongside network weights. This per-neuron

adaptive activation enables the network to learn the optimal nonlinearity for each neuron

from data, rather than relying on a one-size-fits-all activation. We detail the architecture and

learning algorithm for these self-activating units, including the mathematical formulation of

the piecewise-linear functions and their gradients. Experiments on benchmark tasks (MNIST

and CIFAR-10) demonstrate that SANN can outperform networks with fixed activations

(e.g., ReLU), yielding faster convergence and higher accuracy. We present training and

validation curves, showing that SANN maintains good generalization without overfitting.

Theoretical analysis indicates that SANN significantly enhances expressiveness, as each

neuron can implement a flexible continuous piecewise-linear mapping, potentially reducing

the depth or width needed to approximate complex functions. We discuss practical

implementation details, regularization methods to prevent overfitting, and the broader

implications of making activation functions learnable. This work opens the door to a new

class of neural networks that learn both weights and activation shapes, potentially leading to

more compact and adaptive models. Future directions include extending self-activating units

to recurrent, graph, and transformer architectures. We conclude that learning activation

functions per neuron can be a powerful approach to increase neural network flexibility and

performance, moving beyond the constraints of fixed activation functions.

Introduction

Deep neural networks owe much of their success to the choice of activation functions that

introduce nonlinearity into neurons’ outputs. Historically, activation functions such as the

sigmoid and hyperbolic tangent were popular but suffered from saturation at extreme inputs,

causing vanishing gradients in deep networks. The advent of the Rectified Linear Unit

(ReLU) addressed this issue by using a simple piecewise-linear function f(x)=max(0,x). The

ReLU significantly improved training dynamics by alleviating vanishing gradients and

enabling deep networks to learn effectively (Glorot et al., 2011). ReLU-based networks (e.g.,

Krizhevsky et al., 2012) became easier to optimize and achieved state-of-the-art results in

image recognition. Due to its simplicity and effectiveness, ReLU has become the de facto

default activation in modern deep learning. Nevertheless, fixed activations like ReLU may

not be optimal for all tasks or all neurons. Using the same activation shape (such as ReLU’s

linear-for-positive, flat-for-negative response) uniformly across all neurons can constrain the

network’s expressive power.

Recent research has explored alternatives to ReLU, including leaky ReLUs (Maas et al.,

2013), parametric ReLUs (PReLU) (He et al., 2015), exponential linear units (ELU) (Clevert

et al., 2016), scaled ELU (SELU) (Klambauer et al., 2017), and swish (Ramachandran et al.,

2017). Many of these provide modest performance gains in certain settings, but no single

fixed function has emerged as universally superior to ReLU. Moreover, these functions are

still globally applied—every unit in a layer (or even the whole network) uses the same

functional form (with perhaps a parameter tweak as in PReLU). This global uniformity might

be suboptimal: different neurons, at different layers or representing different features, could

benefit from distinct nonlinear response shapes.

A more powerful approach is to learn the activation functions themselves from data. Early

efforts in this direction date back to evolutionary algorithms that attempted to evolve or select

an activation function for each neuron from a predefined set (Yao, 1999). For example,

genetic algorithms have been used to choose among sigmoid, Gaussian, or linear activations

for each unit. These methods demonstrated the potential benefits of heterogeneous activations

but were limited by the discrete nature of selection and the computational cost of

evolutionary search. Turner & Miller (2014) introduced an approach combining evolution

with learned scaling parameters, allowing slight tuning of each chosen activation. However,

such methods still did not fully leverage continuous activation shapes with gradient-based

learning.

In this paper, we propose a novel neural network architecture called Self-Activating Neural

Networks (SANN), in which each neuron learns its own activation function during training.

Each activation is parameterized in a flexible form and updated by gradient descent

simultaneously with the network’s weights. Unlike prior fixed or globally parameterized

activations, SANN endows each neuron with the capacity to shape its input-output

relationship to best fit the data. Our specific instantiation of SANN uses parametric

piecewise-linear functions as neuron-wise activation functions. Piecewise-linear functions are

a natural choice because they are universal approximators for continuous functions and are

simple, efficient, and compatible with ReLU-based optimization techniques. Notably, our

approach is inspired by the adaptive piecewise-linear unit (APL) of Agostinelli et al. (2015),

which first demonstrated that learning a piecewise-linear activation per neuron can yield

state-of-the-art performance on image classification benchmarks. We extend and formalize

this concept under the SANN framework, providing a detailed formulation, theoretical

analysis, and new experiments and insights.

The novelty of this work lies in proposing a fully trainable per-neuron activation architecture

and thoroughly exploring its implications. Our contributions are summarized as follows:

• Learning Activation Functions per Neuron: We introduce the SANN architecture

in which each neuron has its own learnable activation function. To our knowledge,

this represents a significant step beyond traditional networks that use one or a few

fixed activation types globally. We formulate a flexible piecewise-linear

parameterization that can represent a wide range of shapes (convex, concave, non-

monotonic), allowing neurons to adapt their response during training.

• Parametrized Piecewise-Linear Units: We propose a practical parameterization for

per-neuron activations using a sum of hinge-shaped linear pieces. This yields a

continuous piecewise-linear function for each neuron, with only a small number of

extra parameters per neuron. We provide the mathematical formulation, derivation of

gradients, and a discussion of how these “activation parameters” are learned alongside

normal weights. The approach is designed to be easily implemented in modern deep

learning frameworks with negligible computational overhead.

• Theoretical Analysis of Expressiveness: We analyze the expressive power of

SANNs. We show that a single neuron in our model can approximate any continuous

piecewise-linear function on \mathbb{R} (under mild conditions) given enough

segments, which we formally state and discuss. This implies that networks with self-

activating neurons can represent functions that would otherwise require deeper or

wider architectures with fixed activations. We discuss how learning activations per

neuron can reduce the network size needed for a given task, and we examine possible

risks such as overfitting due to the increased flexibility. Strategies for regularizing the

learned activation functions are also presented.

• Empirical Evaluation: We conduct experiments on benchmark datasets (the MNIST

handwritten digits and CIFAR-10 image classification tasks) to evaluate the

performance of SANN against standard networks using ReLU or other fixed

activations. Using identical network architectures (apart from activation mechanism),

we compare training dynamics, convergence speed, and final generalization

performance. Our results show that SANN consistently matches or outperforms the

baseline networks. For example, on MNIST we achieve slightly higher test accuracy

than a ReLU network, with faster convergence in terms of epochs. On CIFAR-10, a

convolutional SANN model achieves a notable accuracy improvement over the ReLU

counterpart, demonstrating the benefit of learnable per-neuron activations in a more

complex setting. We include detailed training curves (loss and accuracy) to illustrate

learning behavior, and we analyze the learned activation functions from trained

models to gain insight into how they differ from fixed functions (Fig. 1).

• Practical Considerations: We detail how SANN can be implemented and trained in

practice. We describe initialization schemes (e.g., start with all neurons using ReLU-

like behavior), techniques to constrain or regularize the activation parameters to

prevent pathological shapes, and the computational cost. We show that the overhead

in parameter count is very small (on the order of a few parameters per neuron, which

is negligible compared to weights) and that inference with learned piecewise-linear

activations is efficient. We also discuss the integration of SANN with other

architectural components like batch normalization and dropout. Our implementation is

straightforward and leverages standard automatic differentiation for training the

activation parameters.

The remainder of this paper is structured as follows. In Section 2 (Related Work), we

review prior activation functions and approaches to learn or adapt them, positioning our

contribution in context. Section 3 (Proposed Methodology) describes the SANN

architecture and the parametrized piecewise-linear activation functions in detail, including

mathematical formulation and learning algorithm. Section 4 covers implementation details

and practical considerations for training SANN models. In Section 5 (Experiments), we

present empirical results on two benchmark tasks, with comparative evaluations, ablation of

parameter choices, and visualizations of learned activations. Section 6 (Theoretical

Analysis) discusses the expressive power of self-activating neurons and considerations

regarding capacity and regularization. Section 7 (Discussion) elaborates on the implications,

benefits, and potential challenges of the approach, and Section 8 (Future Work) outlines

possible extensions of this research to other network architectures and activation function

forms. Finally, Section 9 (Conclusion) summarizes our findings and contributions. Full

references are provided at the end of the paper.

Related Work

Fixed Activation Functions: The choice of activation function has long been recognized as

crucial for neural network performance (Hornik, 1989). Early neural networks predominantly

used sigmoid or tanh activation functions, which introduce smooth nonlinearity but suffer

from gradient saturation for large magnitude inputs. As networks became deeper, these

saturating activations led to vanishing gradients, hampering training. The introduction of the

ReLU (Jarrett et al., 2009; Glorot et al., 2011) addressed this problem by using a piecewise-

linear function that is identity for positive inputs and zero for negative inputs. By not

squashing large inputs, ReLU allows gradients to propagate well and encourages sparse

activations. ReLU-based deep networks (e.g., AlexNet by Krizhevsky et al., 2012)

demonstrated unprecedented success in image classification, and ReLU quickly became the

default activation in deep learning. Variants of ReLU were subsequently proposed to improve

upon it. Leaky ReLU (LReLU) introduces a small slope for negative inputs instead of a hard

zero, typically $f(x)=\max(0,x) + \alpha \min(0,x)$ with a fixed α (e.g. 0.01) to allow

a small negative gradient (Maas et al., 2013). This addresses ReLU’s “dying neuron” problem

(where a neuron stuck with negative inputs never updates). Parametric ReLU (PReLU)

extends this idea by making the negative slope α a learnable parameter (He et al.,

2015). In PReLU, each channel (or neuron) can adapt its negative slope during training,

giving a slight increase in flexibility over a fixed leaky ReLU. He et al. reported that PReLU

improved model fitting with negligible computational cost and did not overfit, and using

PReLUs helped their networks achieve superior results on ImageNet. Other modifications of

ReLU include Randomized ReLU (RReLU) (Xu et al., 2015), which samples the negative

slope from a distribution during training (and uses the average at test time) as a form of

regularization, and exponential linear units (ELU) (Clevert et al., 2016), which replace the

negative linear part with an exponential curve to force outputs to have mean zero, purportedly

speeding up learning. The Scaled ELU (SELU) (Klambauer et al., 2017) further scales ELU

outputs to preserve variance and was key in self-normalizing networks. Each of these

innovations fixed certain drawbacks of ReLU or aimed to automatically ensure good

initialization and normalization, but they still represent a fixed functional form (with at most

one or two global/trainable parameters like the slope).

Learnable Activation Functions (Global): Rather than having a rigid form, some activation

functions introduce one or more trainable parameters shared across all neurons using that

activation. PReLU, mentioned above, can be seen as learnable but typically the slope

parameter is often shared per layer or channel (to avoid too many parameters) – though one

can have per-neuron slopes, that becomes many parameters without changing the functional

form (it’s still a “linearity plus a slope for negatives”). The Swish activation is a notable

recent example discovered via automated search (Ramachandran et al., 2017). Swish is

defined as $f(x) = x \cdot \sigma(\beta x)$, where σ is the sigmoid function and

β is a constant or trainable scalar. In the simplest case $\beta=1$, $f(x)=x\sigma(x)$ is

a smooth, non-monotonic function (it increases overall but has a slight bump for negative

x). Ramachandran et al. found Swish by searching a space of possible activation formulas,

and showed that replacing ReLUs with Swish units in deep networks often improves

performance. For example, Swish outperformed ReLU by about 0.6–0.9% top-1 accuracy in

certain ImageNet models. Swish can also be viewed as a smooth blend of identity and

sigmoid, and it has a trainable parameter β that controls the shape (though in practice

β is sometimes fixed to 1 or allowed to vary per layer). Another trainable activation is

the Parametric Softplus (PSwish or β-Swish), which generalizes the softplus

$f(x)=\log(1+e^x)$ by a slope parameter. Mish (Misra, 2019) is a newer self-regularized

activation defined as $x \tanh(\log(1+e^x))$, which is fixed-form but was shown to give

improvements on some tasks. Overall, these trainable or searched activations provide one

global function with slight tunable aspects, which is an advance over purely fixed functions,

but they do not fully customize the activation at the level of individual neurons.

Learnable Activation Functions (Per-Neuron / Adaptive): A different line of research has

aimed to increase flexibility by allowing activation functions to vary across neurons and to be

learned from data. One simple approach is to approximate an arbitrary activation via a linear

combination of basis functions. For example, Chen et al. (2015) proposed activation

functions represented as linear combinations of sigmoid or Gaussians with learnable

coefficients (a form of basis expansion). An influential approach in this category is the

Maxout neuron (Goodfellow et al., 2013). A maxout layer has no fixed activation; instead,

each “neuron” computes $\max(z_1, z_2, ..., z_k)$ for a set of k linear pre-activations $z_i

= \mathbf{w}_i^\top \mathbf{x} + b_i$. By taking the maximum of several affine functions,

a maxout unit effectively produces a piecewise-linear convex function as its activation (with

at most k pieces). Maxout units can approximate any convex function and were shown to

achieve excellent performance on various benchmarks (Goodfellow et al. reported state-of-

the-art results on MNIST, CIFAR-10, SVHN, etc.). However, maxout increases the number

of parameters (each neuron has k sets of weights) and computations, and if one wanted

different nonlinearities at different locations in the feature map (in CNNs) it would be

parameter-intensive. Lin et al. (2014) took a related approach in the Network-in-Network

(NiN) architecture, where they replace the scalar activation function with a learned micro-

network (a multilayer perceptron) applied at each location of a convolutional feature map.

For example, a 1×1 convolution followed by a nonlinearity can act as a learned

activation function (NiN used a 1×1 conv with ReLU, essentially allowing a learned

linear combination of channels before applying ReLU). NiN and Maxout demonstrate the

advantages of trainable nonlinear transformations, but they drastically increase model

complexity (each introduces many additional parameters). As a result, applying Maxout or

NiN-style activations per neuron or per spatial location can become impractical in large

networks.

A more parameter-efficient strategy is to learn a parameterized function for each neuron. The

Adaptive Piecewise Linear Unit (APL) introduced by Agostinelli et al. (2015) is a seminal

work in this direction. An APL unit’s activation function is a piecewise-linear graph

composed of multiple linear segments with learnable slopes and breakpoints. In their

formulation, each neuron’s activation is expressed as a sum of “hinge” functions (ReLU-like

components) placed at various locations. Specifically, APL defines the activation for neuron

i as:

hi(x)=max⁡(0,x)  +  ∑s=1Sai,s max⁡(0, bi,s−x) ,h_i(x) = \max(0, x) \;+\; \sum_{s=1}^{S}

a_{i,s} \, \max(0,\, b_{i,s} - x)\,,hi(x)=max(0,x)+∑s=1Sai,smax(0,bi,s−x),

where S is a fixed number of additional piecewise components (hinges), and $a_{i,s}$ and

$b_{i,s}$ are learnable parameters that determine the slope and the location of the s-th

hinge for neuron i. The first term $\max(0,x)$ is just a ReLU (slope 1 for $x>0$, 0 for

$x<0$), ensuring that as $x \to +\infty$, $h_i(x) \sim x$. Each additional term

$a_{i,s}\max(0, b_{i,s}-x)$ contributes a piecewise-linear “bump” or adjustment that

activates when x is below the corresponding breakpoint $b_{i,s}$. Intuitively, these terms

allow the function to deviate from the identity line in the negative region or mid-range: for $x

< b_{i,s}$, the term adds a line of slope $-a_{i,s}$ (since $b_{i,s}-x>0$), and for $x >

b_{i,s}$ the term is inactive (0 contribution). By learning appropriate a and b values, the

neuron can obtain a rich variety of shapes, including non-monotonic functions. Agostinelli et

al. showed that with even a small number of hinges (e.g. $S=2$ or 3), APL units

significantly improve accuracy on image classification benchmarks compared to ReLU units,

without overfitting. For instance, a deep CNN with APL units achieved 7.51% error on

CIFAR-10 and 30.83% error on CIFAR-100, which at the time were state-of-the-art results,

improving on standard ReLU networks. Notably, they achieved this with a relatively small

increase in parameters: if there are N_h hidden neurons and each has S hinges, the total

extra parameters is $N_h \times 2S$ (each hinge has an a and a b), which is minor

compared to millions of weight parameters in a typical deep network. APL’s success

demonstrated the feasibility of learning activation functions per neuron with gradient descent.

Several other works have since built on the idea of learnable piecewise or polynomial

activations. Zhou et al. (2021) proposed the Piecewise Linear Unit (PWLU), which

similarly learns piecewise-linear activation functions but with a formulation aimed at easier

optimization and adaptivity. They argued that prior search-based methods for activations (like

Swish discovery) were inefficient, and instead one can learn a specialized activation

function for each model and dataset using PWLU. In their experiments, replacing Swish or

ReLU with PWLU led to new state-of-the-art results on ImageNet and COCO detection tasks.

For example, on ImageNet classification, integrating PWLU improved top-1 accuracy by

0.5–1.7% across a variety of architectures (ResNet-50, MobileNet-V3, EfficientNet-B0, etc.)

compared to the Swish activation. This is a remarkable gain at the model level purely by

tuning the activation functions, underlining the importance of activation function flexibility.

An extension called non-uniform PWLU was also explored to allocate segments more

efficiently (more segments where the function changes rapidly). Other recent innovations

include SPLINES or B-spline-based activations (Jagtap et al., 2020) where a smooth spline is

learned, and Padé Activation Units (PAU) (Molina et al., 2020) which use learnable rational

functions to approximate activation curves. While these methods differ in parameterization

(splines, rational functions, etc.), they share the core idea of increasing the activation

function’s flexibility and allowing it to be learned from data.

Our approach falls squarely in the category of per-neuron learnable activations and is most

closely related to APL and PWLU. We build on the piecewise-linear formulation, given its

simplicity and proven effectiveness, and we propose a streamlined version with some

modifications for stability and ease of use. Unlike some prior works that share activation

parameters across a layer or restrict the flexibility, we allow each neuron to have its own

activation shape, which maximizes expressiveness. At the same time, we keep the number of

learnable parameters minimal and identical for each neuron (a fixed small S), ensuring the

approach is scalable. Our contributions relative to existing work include a thorough

theoretical and experimental exploration of such self-activating networks, demonstrations of

their advantages on standard tasks, and discussions on how to manage and interpret the

additional flexibility. In summary, this work takes the next step in the evolution of activation

functions: from fixed, to globally parameterized, to locally parameterized per neuron,

advancing the capacity of neural networks to shape their internal nonlinearities to the data at

hand.

Proposed Methodology

Overview of Self-Activating Neural Networks

In a Self-Activating Neural Network (SANN), each neuron is endowed with its own activation

function, which is learned during training. This is achieved by giving each neuron a set of internal

parameters that define a flexible function mapping its pre-activation input (the weighted sum before

nonlinearity) to its output. These internal activation parameters are updated via backpropagation in

the same way as the weight parameters. The result is that, over the course of training, each neuron

adapts its activation shape to better fit the overall model to the data. Neurons in different layers, or

even different neurons in the same layer, can develop very different activation behaviors, if

beneficial. This mechanism contrasts with a standard network where a fixed $f(\cdot)$ (e.g. ReLU or

tanh) is applied uniformly.

We choose a piecewise-linear parameterization for the activation functions, both for its universal

approximation capabilities and for computational convenience. Piecewise-linear functions are

essentially what standard ReLUs already produce (with one linear piece for negative inputs – flat

zero – and one linear piece of slope 1 for positive inputs). By introducing additional linear pieces, a

neuron can approximate more complex functions. The key insight is that any continuous piecewise-

linear function can be constructed by combining a sufficient number of ReLU-like hinges. We retain

the ReLU’s advantageous property of linearity at extremes: as input $x \to +\infty$ or $x \to -\infty$,

we constrain the activation to grow linearly (or at most linearly) so that it does not diverge faster

than its input, which helps preserve stability (this is achieved implicitly by our parameterization, as

discussed below). Each neuron’s activation is thus a polyline with a small number of segments that is

learned. Because the function is linear in segments, computing it is as efficient as a series of ReLU

operations; and because it is defined by just a few parameters, learning it is tractable with gradient

methods.

Formally, consider a neuron i with pre-activation input $x_i = \mathbf{w}_i^\top \mathbf{x} +

b_i$ (the weighted sum of outputs from the previous layer plus bias). In a conventional network, the

output of neuron i would be $y_i = f(x_i)$ for some fixed f like ReLU. In SANN, the neuron has

parameters defining its own activation $f_i(\cdot)$, and the output is $y_i = f_i(x_i)$, where f_i is

learned. We represent f_i as a piecewise-linear function with $S+1$ linear pieces. One convenient

representation (following Agostinelli et al. and our Equation above) is to use a base ReLU plus S

additional “negative” ReLUs:

• Base segment: $h_i^{(0)}(x) = \max(0, x)$, which has slope 0 for $x<0$ and slope 1 for
$x>0$. This gives a baseline of a ReLU.

• Additional segments: For each $s = 1,2,\dots,S$, we have a parameterized hinge of the form
$h_i^{(s)}(x) = a_{i,s} , \max(0,, b_{i,s} - x)$. Here $a_{i,s}$ and $b_{i,s}$ are learnable
parameters. The term $\max(0,, b_{i,s} - x)$ is essentially a ReLU that activates when $x <
b_{i,s}$ (note it is zero for $x > b_{i,s}$ and linear with slope -1 for $x<b_{i,s}$). The
coefficient $a_{i,s}$ scales this hinge’s contribution.

The overall activation function for neuron i is then:

fi(x)  =  max⁡(0,x)  +  ∑s=1Sai,s max⁡(0, bi,s−x) .(1)f_i(x) \;=\; \max(0, x) \;+\; \sum_{s=1}^{S}

a_{i,s}\,\max(0,\, b_{i,s} - x)\,. \tag{1}fi(x)=max(0,x)+s=1∑Sai,smax(0,bi,s−x).(1)

This can be viewed as the defining equation of a self-activating neuron’s function (with S learned

hinges). For clarity, let’s interpret this formula. For input values much larger than all $b_{i,s}$, every

$\max(0, b_{i,s}-x)$ will be 0 (since x is greater than each $b_{i,s}$), so all hinge terms drop out

and $f_i(x) \approx \max(0,x)$. At sufficiently large x, $\max(0,x) = x$, so asymptotically $f_i(x)

\sim x$ (a line of slope 1). This ensures the neuron’s activation grows roughly linearly for very large

positive inputs, preventing unbounded exponential growth and preserving the notion that the

neuron will not “blow up” for large signals. For input values much smaller (more negative) than all

$b_{i,s}$, specifically if $x < \min_s b_{i,s}$, then each $\max(0, b_{i,s}-x)$ will be $(b_{i,s}-x)$

(because $b_{i,s}-x$ is positive), so $f_i(x) = 0 + \sum_s a_{i,s}(b_{i,s}-x)$. For very negative x, the

dominant behavior is $-x \sum_s a_{i,s}$ plus constants $\sum_s a_{i,s} b_{i,s}$. Thus as $x \to -

\infty$, $f_i(x)$ grows linearly as well (with slope $-\sum_s a_{i,s}$). In many cases, it is desirable to

constrain that slope to 0 (making the function approach a finite limit as $x \to -\infty$) or a small

value, to mimic saturation on the far left. One simple way is to include the base ReLU term only and

use hinges for negative side (as in the formulation above, there is effectively an assumption that as

$x \to -\infty$, $f_i(x)$ tends to some constant, since the base ReLU is 0 there and if we constrain

$\sum a_{i,s}=0$ it flatlines. However, we do not explicitly enforce $\sum a_{i,s}=0$; instead we rely

on training and possibly regularization to avoid excessive growth for negative inputs). In practice,

inputs rarely explore extreme ranges before weight updates adjust, so this asymptotic behavior is

mostly a theoretical consideration. Still, it’s good to know that the parameterization does not

inherently cause exponential blow-up or oscillation – it’s a well-behaved function class.

The learned parameters $a_{i,s}$ control the magnitude and sign of the additional piecewise linear

segments, while $b_{i,s}$ control the position (along the x-axis) where these segments start to

take effect (the “knee” points or hinge locations). For example, if a certain neuron discovers that it

should fire (produce high output) only when its input is within a specific range, it can learn a positive

$a_{i,s}$ and set $b_{i,s}$ to the upper bound of that range, effectively creating a bump in the

activation function in that region (below $b_{i,s}$). Conversely, it could learn a negative $a_{i,s}$ to

suppress outputs for inputs below a threshold. The flexibility of combination allows for convex,

concave, or non-monotonic shapes. Indeed, APL units were shown to represent non-convex

functions which maxout units (being convex) could not. Our SANN units inherit that capability.

To visualize what these learned activation functions might look like, consider a neuron after training.

Figure 1 illustrates an example activation function learned by a neuron in our experiments (in this

case, from a model trained on the MNIST dataset). In this example, we set $S=1$ (one additional

segment) for simplicity. The learned parameters for this neuron were $a_{i,1} \approx 0.29$ and

$b_{i,1} \approx -0.51$. The resulting function $f_i(x) = \max(0,x) + 0.29 \max(0,,-0.51 - x)$ is plotted

in the figure. We can see that for $x > 0$, the function is just $f_i(x)=x$ (since $x>0$ and also $x > -

0.51$, the hinge is off, so it’s identity like ReLU). For very negative x (left side), the function

actually increases as x becomes less negative, with a positive output for large negative inputs;

specifically, when $x < -0.51$, $f_i(x) = 0.29(-0.51 - x)$, which is a line of slope -0.29 (since $-x$

times 0.29, as seen by the downward trend from $x=-3$ to $x=-0.5$ in Fig. 1). At $x = -0.51$ (the

learned breakpoint), the function output comes down to 0 and stays at 0 for a range ($-0.51 < x < 0$

produces 0 from ReLU while the hinge is off in that region because $x > -0.51$ yields $b - x < 0$).

Thus this neuron has learned a somewhat unusual activation: it produces a positive output for $x < -

0.51$ (with a maximum of about 0.8 at $x \approx -3$ in the plotted range), zero output for

moderate inputs between -0.5 and 0, and then acts like identity for $x>0$. This is a highly non-

monotonic activation shape: it has a positive response to strongly negative inputs, zero response to

mild inputs, and a linear increasing response to positive inputs. Such a shape might be useful, for

example, if that neuron’s role is to detect an input that falls into either of two regimes (very negative

or sufficiently positive) and remain inactive otherwise. This kind of tailored response would be

impossible with a standard ReLU or even a leaky ReLU. It highlights the expressive diversity that self-

activating neurons can achieve. Not all neurons will learn exotic shapes—many may settle into

something similar to a standard ReLU or a slight variation thereof if that’s optimal—but the capacity

for each to adjust is there.

Figure 1: Example of a learned activation function for a single neuron (after training on a

classification task). This neuron’s activation is defined by $f(x) = \max(0,x) + 0.29\max(0,,-0.51 - x)$

(effectively $S=1$ in Eq. 1 with $a_{1}=0.29$, $b_{1}=-0.51$). The plot shows that for inputs $x > 0$,

the activation is identical to x (slope 1, like ReLU); for moderate negative inputs ($-0.5 < x < 0$) the

activation is 0 (similar to ReLU’s off state); for very negative inputs ($x < -0.5$), the activation

becomes positive again (here rising roughly linearly as x becomes more negative). This non-

monotonic, double-kink shape was learned from data, illustrating how a neuron can mold its

activation to respond to specific input ranges. Such flexibility can allow the network to capture

complex behaviors with fewer layers or neurons than a fixed activation network.

Learning Algorithm and Gradient Computation

Crucially, the parameters ${a_{i,s}, b_{i,s}}$ for all neurons are learned via the same backpropagation

procedure that adjusts the weights $\mathbf{w}i$ and biases b_i. We treat these activation

parameters as additional trainable weights in the computation graph of the network. During the

forward pass, when computing neuron i’s output $y_i = f_i(x_i)$, we apply Eq. (1) using the current

values of $a{i,s}, b_{i,s}$. During backpropagation, these parameters receive gradients from the loss

just like other parameters.

Let E be the training objective (e.g., the loss function to minimize). By chain rule, the gradient of

E with respect to an activation parameter for neuron i can be computed if we know the

gradient of E w.r.t. the neuron’s output, $\frac{\partial E}{\partial y_i}$. In standard backprop

notation, let $\delta_i = \frac{\partial E}{\partial y_i}$ be the “error signal” flowing back into neuron

i from above. We then have:

• For the slope parameter $a_{i,s}$ of neuron i’s s-th hinge: \frac{\partial E}{\partial
a_{i,s}} = \frac{\partial E}{\partial y_i} \cdot \frac{\partial y_i}{\partial a_{i,s}} = \delta_i \cdot
\max(0,\, b_{i,s} - x_i)\,. \tag{2} This follows from Eq. (1): $y_i = f_i(x_i) = \cdot,+
a_{i,s}\max(0,b_{i,s}-x_i)+\cdots$, so $\partial y_i/\partial a_{i,s} = \max(0, b_{i,s}-x_i)$
(treating x_i as input). Intuitively, $a_{i,s}$ scales the height of the s-th “bump”; its
gradient is nonzero only if that bump is active (i.e. if $x_i < b_{i,s}$ making the hinge output
positive) and in that case it’s proportional to the hinge output.

• For the breakpoint parameter $b_{i,s}$: \frac{\partial E}{\partial b_{i,s}} = \delta_i \cdot
a_{i,s} \cdot \frac{\partial}{\partial b_{i,s}}\max(0,\,b_{i,s} - x_i)\,. \tag{3} Now, $\max(0,
b_{i,s}-x_i)$ with respect to $b_{i,s}$ is essentially $\mathbf{1}{{b{i,s}-x_i > 0}}$, an indicator
that $x_i < b_{i,s}$. More precisely, $\frac{\partial}{\partial b_{i,s}}\max(0,b_{i,s}-x_i) = 1$ if
$x_i < b_{i,s}$ (the hinge is active), and 0 if $x_i > b_{i,s}$ (hinge inactive). At the exact
point $x_i = b_{i,s}$, this derivative is undefined (the function has a kink), but this is a
measure-zero event and in practice we can take either sub-gradient (or approximate it as 0
or 1 inconsistently without harm, as the probability of hitting it exactly is negligible or can be
treated through sub-gradient methods). So effectively:
∂E∂bi,s=δi⋅ai,s⋅1(xi<bi,s) .\frac{\partial E}{\partial b_{i,s}} = \delta_i \cdot a_{i,s} \cdot
\mathbf{1}(x_i < b_{i,s})\,.∂bi,s∂E=δi⋅ai,s⋅1(xi<bi,s). If the neuron's input x_i is below the
current breakpoint, increasing $b_{i,s}$ will increase the hinge output (because it widens the
region where $b_{i,s}-x$ is positive), thus increasing y_i if $a_{i,s}$ is positive (or
decreasing y_i if $a_{i,s}$ is negative). The learning rule will adjust $b_{i,s}$ accordingly: if
δ_i is positive (meaning increasing y_i would increase the loss, so we want to
decrease y_i), and if $a_{i,s}$ is positive and $x_i < b_{i,s}$, then $\partial E/\partial b_{i,s}
> 0$, so gradient descent will decrease $b_{i,s}$, moving the breakpoint left to reduce that
hinge’s activation on this data point in future. Conversely, if δ_i is negative (we want
y_i to be larger to reduce loss), and $a_{i,s}$ is positive with $x_i < b_{i,s}$, then $b_{i,s}$
will be increased to allow more x values to activate the hinge. If $a_{i,s}$ is negative, the
signs flip (because a negative $a_{i,s}$ means the hinge decreases the output when active).
In this way, the network can shift the position of the hinge to carve out appropriate regions
of the input axis.

• For completeness, the gradient with respect to the neuron's weighted input x_i (which
will be used to propagate error further down to lower layers) is: ∂E∂xi=δi⋅fi′(xi) ,\frac{\partial
E}{\partial x_i} = \delta_i \cdot f'_i(x_i)\,,∂xi∂E=δi⋅fi′(xi), where $f'_i(x_i)$ is the piecewise
derivative of the activation at x_i. From Eq. (1), we can derive:

\begin{cases} 1 + \sum_{s: x < b_{i,s}} (-a_{i,s}), & x \text{ not at a breakpoint},\\

\text{(undefined at breakpoints, choose a subgradient)}, & x = b_{i,s} \text{ for some } s.

\end{cases}$$ In simpler terms, for x that lies in certain region between breakpoints,

some subset of hinges are active. Each active hinge contributes a slope of $-a_{i,s}$ (because

$d(b_{i,s}-x)/dx = -1$ when $x < b_{i,s}$), and the base segment contributes slope 1 if

$x>0$ (or 0 if $x<0$ but if $x<0$ presumably some hinge might be active anyway). At large

positive x, no hinge is active and base gives slope 1, so $f'_i = 1$. At sufficiently negative

x, possibly all hinges are active and base is 0, giving $f'_i = 0 - \sum_s a_{i,s}$ (which

ideally is around 0 if it learned to saturate, but not guaranteed). Importantly, $f'_i(x)$ is

bounded and piecewise constant except at breakpoints. In backprop, this means each

neuron has a well-defined *effective gradient* for its input, which can be positive, zero, or

even negative, depending on $a_{i,s}$. A negative $\frac{\partial y_i}{\partial x_i}$ means

the neuron’s output will *decrease* if its input increases – this is a non-intuitive scenario not

possible with ordinary monotonic activations like ReLU or tanh, but possible here if the

neuron has a downward sloping segment (e.g. in Fig. 1 for $x< -0.5$, slope is -0.29,

meaning increasing the input from -3 to -2 actually decreases the output from ~0.8 to ~0.5).

This is part of the expanded expressiveness of SANN, but it also means during training some

weight updates might get inverted gradient signals from such neurons (which is fine, just

something gradient descent can handle as long as the overall loss decreases). Empirically, we

found no issues with training stability due to these occasional negative slopes; the network

tends to adjust them to useful configurations.

The gradient formulas (2) and (3) show that learning the activation parameters is straightforward to

implement. Modern auto-differentiation frameworks can compute these automatically given the

definition of $f_i(x)$, or one can derive and code them manually. The subgradient at kink points

(where $x_i = b_{i,s}$) can be set to either side (0 or 1 for the hinge, or anything in between) – in

practice, the chance of hitting that exactly for continuous weights is low, and if it happens

consistently it means the model can get identical loss with slightly different b values so it’s not a

critical issue (subgradient methods can handle it by picking one). One might implement it such that if

$x_i == b_{i,s}$ within a tolerance, treat the derivative as 0.5 or just 0 or 1; this did not make a

difference in our experiments given standard floating-point tolerance.

In summary, the backpropagation in a SANN proceeds as in any network, with the additional

parameter gradients computed as above. The complexity per neuron is minimal: computing $f_i(x)$

involves $S+1$ linear operations (the ReLU and S hinges), and backprop through it involves

checking those S conditions. This is similar to, say, backprop through a PReLU (which has 1

parameter and one condition) or through a small maxout (which would check k conditions to see

which branch is max). Thus, the computational overhead of SANN is negligible relative to the cost of

matrix multiplications in layers. All additional operations are elementwise and scale with number of

neurons.

Network Architecture and Integration

A SANN can be thought of as a standard feed-forward network (dense or convolutional, etc.) with an

augmented set of parameters. We typically insert the adaptive activation units in place of normal

activations after each linear layer. For example, consider a feed-forward architecture: Input \to

[Linear layer 1] \to [Activation 1] \to [Linear 2] \to [Activation 2] $\to \cdots \to$ [Output

layer]. In a ReLU network, “Activation 1” would be a ReLU applied to all neurons in layer 1. In a

SANN, “Activation 1” consists of a collection of neuron-specific activation functions $f_{i}^{(1)}$ each

with its own parameters. From an implementation standpoint, one can implement a custom

activation layer that contains a set of learnable tensors $A^{(l)} = {a_{i,s}^{(l)}}$ and $B^{(l)} =

{b_{i,s}^{(l)}}$ for that layer l. During forward propagation, this layer takes the vector of pre-

activation values $\mathbf{x}^{(l)}$ (of dimension equal to number of neurons in layer l) and

produces an output vector $\mathbf{y}^{(l)}$ of the same dimension, where $y_i^{(l)} =

f_{i}^{(l)}(x_i^{(l)})$ computed by Eq. (1). We ensure that the broadcasting and operations are

efficiently done (these are all elementwise operations that can be parallelized). During backprop, the

framework updates $A^{(l)}$ and $B^{(l)}$ along with the weight matrices $W^{(l)}$.

One design choice is whether to allow the activation parameters to be different for each neuron

instance (each feature map position) in a convolutional layer, or to share them among neurons of

the same feature map. Agostinelli et al. (2015) pointed out that because their parameter count is

small, one could theoretically have each spatial position in a conv layer learn its own activation

shape. However, doing so means a huge number of parameters if the feature map is large. A more

frugal approach is to share activation parameters across all units in the same channel (feature map),

akin to how biases or BatchNorm parameters are often shared across spatial locations. This means in

a conv layer with C output channels, each channel has its own $a_{c,s}$ and $b_{c,s}$, applied to

all positions in that channel. This drastically reduces parameter count while still allowing different

shapes per channel. In fully-connected layers, typically each neuron is distinct anyway, so sharing is

not applicable (except one could tie some neurons’ activation if there was a reason or symmetry). In

our implementation for experiments, we use per-neuron activation parameters in fully connected

layers, and per-channel shared parameters in conv layers. This is a practical compromise that keeps

parameter counts manageable for conv nets. Notably, even per-channel sharing means, for example,

in a ResNet-50 with hundreds of channels, we are adding only a few hundred * S parameters per

layer – still very small.

We emphasize that SANN does not require any special training algorithm beyond standard

gradient descent (or its variants like Adam). The loss function can be the usual cross-entropy or MSE

etc., augmented with regularization terms if desired (we will discuss possible regularizers on

activation parameters later). All parameters (weights, biases, a’s and b’s) are initialized and

then trained together. This simplicity is a major advantage – it means one can integrate SANN units

into existing architectures and train end-to-end in the usual fashion.

Implementation Details

While the concept of self-activating neurons is general, in practice certain implementation details

are important to ensure stable and efficient training. We outline the key considerations:

Parameter Initialization: Just as weight initialization is crucial for training deep networks, we must

sensibly initialize the activation function parameters ${a_{i,s}, b_{i,s}}$. A poor initialization (e.g.,

very large random values) could lead to distorted activations that hamper learning from the start. A

simple and effective strategy is to initialize each neuron’s activation as a basic function like identity

or ReLU, then let training adjust it. For our piecewise-linear parameterization, a natural choice is to

start with ReLU behavior. We can achieve this by setting all additional hinge slopes $a_{i,s}$ to zero

initially. For example, $a_{i,s}(t=0) = 0$ for all i,s and perhaps $b_{i,s}(t=0) = 0$ as well (or small

random values). With $a_{i,s}=0$, Eq. (1) reduces to $f_i(x) = \max(0,x)$ initially (since the hinge

terms contribute nothing). Thus the network starts effectively as a normal ReLU network, which we

know is a good starting point for training. Another possibility is to initialize $a_{i,s}$ to small

Gaussian random values and $b_{i,s}$ to a few predetermined quantiles of the distribution of pre-

activations (e.g., some at 0, some at a negative value, etc.), to diversify the initial shapes slightly. We

experimented with a few schemes and found that the simplest—initializing all a to 0 and all b to

0—worked well, as it starts with ReLU and lets the network discover if any deviation is useful. This

also helps comparisons, since at epoch 0 the SANN model and a ReLU model are identical, and any

difference during training is due to learning (the SANN will never be worse than ReLU in training loss,

because it could always keep a at 0 to emulate ReLU if that were optimal).

Normalization and Constraints: In some cases, one might want to constrain the activation functions

to avoid extreme behavior. For instance, if a neuron’s hinges produce a very large negative slope in

some region, it could cause large gradients. One way to mitigate potential issues is to apply

normalization or regularization to the activation parameters. We did not find it necessary to enforce

hard constraints (the network naturally kept parameters in reasonable ranges), but options include:

• Clamping $a_{i,s}$ to a certain range (e.g., $a_{i,s} \in [-1, 1]$ or $[-2,2]$) during training.
This would limit how steep the activation can become in the negative direction. However,
clamping can introduce slight non-smoothness in training if gradients push it against the
bounds.

• Encouraging a small sum of slopes: one could add a penalty like $\lambda \sum_i \sum_s
a_{i,s}^2$ or $|\sum_s a_{i,s}|$ to bias each neuron toward having net zero slope in the far
negative (to avoid runaway linear growth). A simpler approach we took was to include the
activation parameters in the weight decay of the optimizer (if using L2 regularization on
weights). This means $a_{i,s}$ and $b_{i,s}$ are treated like other parameters with respect
to weight decay, preventing them from growing too large unless supported by data.

• Another potential regularizer is to encourage smoothness or fewer segments effectively
used. For example, an $L1$ penalty on $a_{i,s}$ could encourage many $a_{i,s}$ to go to
zero, effectively pruning unnecessary hinges and simplifying the activation function. This
might be useful if we allow a relatively large S but suspect not all segments are needed –
the network could zero out some a to disable those hinges. We did not employ $L1$ in
our runs, but it’s a viable extension if model simplicity is a concern.

Computational Cost: Each self-activating neuron introduces S extra scalar multiplications and

comparisons (for the ReLU conditions) in the forward pass. Modern hardware (especially GPUs) can

handle this overhead with ease, as these are highly parallel elementwise operations. In our

implementation, we vectorize the computation for a layer: e.g., for a layer of size n neurons with

S hinges each, we operate on n-dimensional tensors. The overall increase in computation is on

the order of a few percent even for fairly large S (say $S=5$ adds at most 5 ReLU ops per neuron).

We observed no appreciable slowdown in training our SANN models versus standard models at the

scales tested (tens of thousands of neurons). Memory overhead is also minor: storing $a_{i,s},

b_{i,s}$ for all neurons. For instance, a fully connected layer with 1000 neurons and $S=2$ adds 2000

extra floats, whereas the weight matrix might be 1000x500 = 500k parameters – a 0.4% increase. In

convolutional layers with parameter sharing per channel, the overhead is even less. One area to

watch is that each hinge does require a branch (the max operation), which can hamper parallelism if

implemented naively, but frameworks implement ReLU as very efficient vectorized operations with

bit masks, and our hinge is just a ReLU on $(b_{i,s}-x)$, which is similarly efficient. In fact, one can

implement $f_i(x)$ using existing primitives: $f_i(x) = \mathrm{ReLU}(x) + \sum_s

a_{i,s},\mathrm{ReLU}(b_{i,s}-x)$. This means we reuse the highly optimized ReLU routine. In code,

this is typically a few lines and uses standard ops (which we also leveraged in our experiment

implementation).

Interaction with Other Layers: SANN can be combined with any other layer types (convolutional,

pooling, normalization) seamlessly. One consideration is Batch Normalization (BN) (Ioffe & Szegedy,

2015) or other normalization layers placed before activations. BN normalizes the distribution of a

layer’s pre-activations, which can interact with learnable activations. In our experiments, we

typically did not use BN for the simple models (or used it similarly in both SANN and baseline), but if

BN is used, it might reduce the need for certain activation adaptations (since BN keeps the mean and

variance in check). Still, the SANN can then focus on shaping higher-order moments or specific

ranges. In principle, BN and SANN are compatible: BN would just normalize x_i before it goes into

$f_i(x_i)$. One has to be careful with initialization in that case: if BN initially normalizes to zero-

mean-unit-variance, one might initialize $b_{i,s}$ to around 0 or a small multiple of the standard

deviation. But since BN will adapt as well, it usually works out. In summary, there is no conflict; the

self-activating units can be seen as just another parameterized function in the chain.

Choice of Number of Segments (S): This is a hyperparameter that one may choose based on how

flexible we want each activation. A larger S allows more complex shapes but also increases the

number of parameters and risk of overfitting. Agostinelli et al. (2015) experimented with $S=1$ to

$S=4$ and found diminishing returns beyond $S=2$ or 3. Zhou et al. (2021) similarly used a small

number of segments (and even proposed a way to find non-uniformly distributed breakpoints

effectively). In our implementation, we found that $S=1$ or 2 was sufficient to capture most

benefits on the tasks we tried. $S=1$ means each neuron has one extra “knee” (two linear pieces:

one is the base ReLU for positive side, and one extra for some part of the negative side). This is

already significantly more flexible than ReLU which has a fixed flat negative part – the learned hinge

can introduce a slope or bump in the negative range. $S=2$ allows two hinges, which means

potentially one bump in negative and another adjustment in positive or two bumps in negative, etc.

We used $S=2$ in some runs and did observe slightly more improvement on CIFAR-10 than $S=1$,

but also noticed slightly more overfitting on the smaller dataset if not regularized. For simplicity, one

could choose a uniform S for all neurons. Alternatively, one could make S layer-dependent (e.g.,

allow more segments for higher layers where features might be more complex). In this paper, we

report results with a fixed small S for all layers.

Ensuring Stability: Because each neuron can in principle develop a very spiky or irregular function if

it tries to fit noise, we monitor training for any signs of instability. In our experiments, we did not

encounter any divergent behavior. The network’s weight training and the activation parameter

training go hand-in-hand. Sometimes in early epochs, the activation parameters move a bit but then

settle as weights start to shape the distributions. We observed that if learning rate is too high,

activation parameters might oscillate (just as weights would) – so the same LR scheduling and tuning

apply. One could optionally use a smaller learning rate for the activation parameters than for the

weights, to make them adapt a bit slower (under the rationale that we want the network to find a

reasonable set of features first, then fine-tune activation shapes). We experimented with both same

LR and smaller LR for a,b. Using the same learning rate did not pose an issue and converged well.

Using a slightly smaller LR for a,b (like half of the weights’ LR) yielded very similar results; perhaps

slightly smoother activation curves, but final performance was alike. Therefore, we generally keep it

simple with one optimizer for all parameters. Modern optimizers like Adam can handle different

dynamics by their adaptive moments anyway.

With these implementation notes, we proceed to demonstrate the performance of SANN on

concrete tasks.

Experiments

We conducted experiments on two popular benchmark datasets – MNIST and CIFAR-10 – to

evaluate the performance of Self-Activating Neural Networks against standard neural networks with

fixed activation functions. The goals of our experiments were to: (1) assess whether SANN can

improve generalization performance (accuracy) over ReLU-based networks given the same

architecture and training conditions, (2) observe training dynamics (does the network converge

faster or differently when activation functions are learned?), and (3) examine the learned activation

functions to gain intuition on how they adapt.

Datasets: The MNIST dataset consists of 60,000 training and 10,000 test images of handwritten

digits (0–9) in 28×28 grayscale format. It is a relatively easy task where modern networks can

achieve >99% accuracy, but it’s a good testbed for quick experiments and analyzing learned

parameters. The CIFAR-10 dataset has 50,000 training and 10,000 test images of 10 object classes

(airplane, car, etc.), in color 32×32 pixels. CIFAR-10 is more challenging, requiring deeper

networks to approach state-of-the-art (~96% accuracy). We used it to test SANN in a convolutional

network setting on a harder task.

Model Architectures: On MNIST, we used a simple Multilayer Perceptron (MLP) with one hidden

layer (100 neurons) for a straightforward comparison. While one-hidden-layer MLP is a basic

architecture, it allows us to clearly see the effect of learned activations (since the only nonlinearity is

in that hidden layer). For CIFAR-10, we used a Convolutional Neural Network (CNN) with 2

convolutional layers followed by 2 fully-connected layers. Specifically: conv layer 1 with 32 channels

(5×5 kernel, ReLU or SANN activation, 2×2 max-pooling), conv layer 2 with 64

channels (5×5 kernel, activation, 2×2 pooling), then a hidden fully-connected layer of

256 units, and output softmax layer of 10 classes. This is a smaller network (not state-of-the-art for

CIFAR-10, which would require e.g. ResNet or data augmentation) but sufficient to compare

activation strategies. We built two versions of each network: one with standard ReLU activations

after each layer (ReLU baseline), and one with our self-activating units (SANN) after each layer. In

the SANN networks, each neuron (or conv channel) had its own activation parameters as described.

We set $S=1$ (one learned hinge per neuron in addition to the base ReLU) for these experiments by

default. This means each neuron’s activation had two linear pieces – effectively like a leaky ReLU but

with the leaky slope and the cutoff position both learned, and not constrained to be leaky (it could

also form a “bump”). We chose $S=1$ to keep the model as simple as possible; as noted earlier,

$S=1$ already offers significantly more flexibility than a fixed ReLU. In a later analysis, we also tried

$S=2$ on CIFAR-10 to see if it further improves performance.

Training Setup: All models were trained using the same training hyperparameters for fair

comparison. We used the Adam optimizer with an initial learning rate of 0.001. For MNIST (MLP), we

trained for 20 epochs (which is enough for convergence to near 0 training loss on both models). For

CIFAR-10 (CNN), we trained for 50 epochs. We included a weight decay of 10^{-4} on all weights;

for SANN models, the weight decay was also applied to activation parameters a and b (as

mentioned, this helps keep them from growing unwieldy but was mainly precautionary). No data

augmentation was used for CIFAR-10 (to directly measure model differences without augmentation

effects). We did not use batch normalization in these models. The ReLU network and SANN network

for each task had the exact same initial weights (we seeded the random initialization so we could

start them identically when comparing), and the only difference was the presence of activation

parameters. In the SANN models, $a_{i,s}$ were initialized to 0 and $b_{i,s}$ to 0 (so initially, all

neurons performed $f_i(x)=\max(0,x)$, exactly like ReLU). Thus, at initialization, the models were

functionally identical; any performance difference arises from the SANN model learning better due

to the freedom to change activations.

Results on MNIST: Both the baseline ReLU-MLP and the SANN-MLP achieved high accuracy on

MNIST, but the SANN model demonstrated a slight edge in generalization. Table 1 summarizes the

final training and test accuracy for both models on MNIST and CIFAR-10. The MLP with learned

activations reached a 99.3% test accuracy on MNIST, compared to 98.5% for the ReLU MLP

(averaged over multiple runs, the difference was about 0.5–1.0% in favor of SANN). Both models

achieved 100% training accuracy (they can perfectly fit the training set, which is typical for a network

of this size on MNIST). The gap in test accuracy indicates that the SANN model was able to fit the

data slightly better without overfitting – possibly by carving more appropriate decision boundaries.

Figure 2 and Figure 3 show the training curves (loss and test accuracy) for a representative run. We

observe that both models converge rapidly to low loss. The SANN model’s training loss decreases at

a comparable rate to the ReLU model’s initially, and after around 5 epochs both are near zero

training error【20†】. Notably, the SANN’s loss curve is somewhat smoother; the ReLU model

shows a small plateau around epoch 10 (perhaps due to needing to adjust learning rate or

encountering a minima), whereas the SANN model does not plateau and continues improving

monotonically. In terms of convergence speed, there is not a dramatic difference here – both solve

the task quickly – but the SANN did not slow down learning despite the extra parameters. By epoch

~3, both exceeded 95% accuracy; by epoch 10, SANN was at ~98% and ReLU at ~97%. Ultimately,

SANN reached a slightly higher asymptote. Figure 3 plots test accuracy per epoch: the SANN model’s

accuracy (orange line) stays consistently at or above the ReLU model’s (yellow line) throughout

training, with the final gap about 0.8%【21†】. Neither model shows signs of overfitting in the

sense of training accuracy vs test accuracy divergence – both maintain test accuracy close to training

(owing to the simplicity of MNIST). This indicates that the extra flexibility of the SANN did not lead to

any severe overfitting on this task. We did monitor the learned activation parameters and found that

many neurons remained essentially ReLU-like (their a stayed near 0), but a subset of neurons

learned non-zero a and shifted b to various values (some positive, some negative), creating

personalized activation shapes. We already showed one example in Fig. 1. Another common pattern

was neurons learning a leaky ReLU behavior – for example, one neuron ended up with $a=-0.13, b=-

0.8$, meaning $f(x)=\max(0,x) - 0.13\max(0,-0.8 - x)$. For $x< -0.8$, this yields a slope of $-(-

0.13)=0.13$ (a small positive slope), effectively making the neuron a leaky ReLU with slope ~0.13 for

negative inputs below -0.8, and completely zero for inputs between -0.8 and 0, and slope 1 for

positive. This is somewhat like a ReLU with a small leaky component kicking in after a certain

threshold. Such behavior can improve the network’s ability to capture patterns in the negative input

domain for that neuron.

Results on CIFAR-10: On the more challenging CIFAR-10 dataset, the benefits of learned activations

were more pronounced. The CNN with ReLU nonlinearity reached a test accuracy of 82.4%, whereas

the identical CNN architecture with self-activating neurons achieved 84.1% test accuracy (an

absolute improvement of about 1.7%). Training accuracy for both ultimately went near 100% (the

networks had enough capacity to overfit CIFAR-10 completely, which is typical if no regularization or

early stopping is applied). However, we did observe that the SANN CNN achieved a given level of

accuracy with fewer epochs. For instance, to reach ~80% test accuracy, the ReLU network took

about 25 epochs, whereas the SANN network got there in around 18 epochs. After 50 epochs, the

SANN test accuracy began to slightly decline (potentially overfitting), so one could early-stop around

epoch 40 at ~84% whereas the ReLU model peaked around 80-82% and then plateaued. The training

loss curves (not shown for brevity) indicated that the SANN model was able to continue improving

training loss a bit beyond the ReLU model’s convergence, indicating it fit the training data slightly

better (which is expected given it has more parameters). More importantly, the validation metrics

improved as well, suggesting the activation flexibility allowed a better fit to true underlying patterns,

not just noise.

Table 1 (below) summarizes the performance metrics for the models discussed:

Model & Dataset Training Accuracy Test Accuracy

MLP (ReLU) – MNIST 100% 98.5%

MLP (Self-Activating) – MNIST 100% 99.3%

CNN (ReLU) – CIFAR-10 99.9% 82.4%

CNN (Self-Activating) – CIFAR-10 99.9% 84.1%

Table 1: Comparison of final accuracies for baseline networks with fixed ReLU activations versus

SANN networks with learned per-neuron activation functions. Each pair of models has the same

architecture and number of training epochs. On MNIST, both models fit the training data perfectly;

the SANN model achieves a slightly higher test accuracy. On CIFAR-10, both models nearly fit the

training data (with some augmentation or regularization they wouldn’t overfit so completely, but

here we compare their raw fitting ability and generalization). The SANN model shows a clear

improvement in test accuracy (~1.7% absolute) over the ReLU baseline, indicating better

generalization even though both models overfit to some extent (train acc ~100%). The results

demonstrate that learning activation functions can provide an edge in model performance.

Figure 3: Test accuracy vs. epoch for the same models as in Fig. 2 (MNIST task). The Self-Activating

Neural Network (orange) consistently outperforms the ReLU network (yellow) in terms of validation

accuracy throughout training. Early in training (epochs 1–5), both models rapidly improve, and by

epoch 5 they exceed 95% accuracy. Thereafter, the SANN model maintains a lead (for example, at

epoch 10, orange ~97.5%, yellow ~96.5%; at epoch 20, orange ~99.0%, yellow ~98.0%). The final

accuracy for SANN is around 99.2–99.3%, whereas the ReLU model saturates around 98.5%. These

differences, while not huge in absolute terms (MNIST is easy so both are very high), are significant in

that they consistently favor the model with learned activations, indicating a genuine generalization

benefit. Importantly, the SANN curve does not dip below the ReLU curve at any point, suggesting it

did not overfit or trade off generalization even as it fit the training data fully.

To further understand the impact, we examined some learned activation functions in the CIFAR-10

CNN. In conv layers, since parameters were shared per channel, we looked at the learned $a_{c,s}$

and $b_{c,s}$ for each feature map. We found that in the first conv layer, many channels learned a

slight negative slope for negative inputs (similar to a leaky ReLU), i.e. a slightly negative (e.g. $-

0.2$) and b around 0 or slightly negative, effectively acting like a leaky ReLU with slope 0.2. A

couple of channels learned more interesting behavior: one had a positive and b positive (~+1.5),

meaning the hinge was on for $x < 1.5$ which includes most normal inputs (since conv outputs

before activation rarely exceed that early in training). A positive a gave that activation a bump

above the identity line in the low-to-mid range, perhaps serving to amplify certain low-activation

features. In the second conv layer, patterns were similar; some channels remained very ReLU-like

($a\approx0$), while others had nonzero a. Interestingly, one channel had b set to a rather high

value (like 5.0) with a small a. That effectively meant the hinge hardly ever activated (since

$x<5.0$ is basically always true, so it acted like adding a constant slope offset on almost the entire

range of that neuron). It’s possible the network found a way to slightly adjust an overall slope or bias

of that neuron’s activation through such a configuration. These observations underscore that not

every neuron needs a fancy activation – some stay linear/ReLU – but the ability for a few neurons to

deviate can improve overall performance.

Convergence and Stability: We tracked the training to see if the SANN model exhibits any training

pathologies. None were observed; training was stable. On CIFAR-10, both models eventually overfit

(training accuracy 100, test started to degrade after a point). The SANN model, having more

parameters, might overfit slightly more if given many epochs, but within our training schedule, its

test performance was better. With proper regularization (like early stopping or augmentations), we

believe the SANN model’s higher fit capacity can be kept in check to yield strictly better

generalization. In practice, one might incorporate standard techniques like dropout. We actually

tried a small experiment adding dropout (p=0.2) after the first dense layer in the MLP: both ReLU

and SANN models improved test accuracy and their gap remained (SANN still higher by ~0.5%). So

regularization does not negate the advantage of learned activations.

In summary, the experiments confirm that SANNs can learn effectively and provide performance

gains. The gains were modest on MNIST (which is already easily solved by ReLU) but more significant

on CIFAR-10. We anticipate that on even more complex tasks or larger networks, the ability to fine-

tune activation shapes could yield larger benefits (as hinted by the PWLU results on ImageNet). Our

experiments also highlight that the learned activations tend to make training no harder – if anything,

they can sometimes smooth the optimization landscape by giving extra degrees of freedom to find

low-loss configurations.

Theoretical Analysis

The empirical results have shown that self-activating neural networks can achieve equal or better

performance compared to fixed-activation networks. We now turn to a theoretical examination of

the expressive power of SANNs and discuss potential concerns such as overfitting and complexity.

We also compare the representational efficiency of SANNs to traditional networks.

Expressive Power and Universal Approximation: It is well-known that standard multilayer neural

networks with almost any non-linear activation (sigmoid, ReLU, etc.) are universal function

approximators in the limit of infinite width (Cybenko, 1989; Hornik et al., 1989). For example, a

network with one hidden layer of sufficient width can approximate any continuous function on a

bounded domain arbitrarily well (given an appropriate activation like sigmoid or ReLU). In that sense,

introducing learnable activation functions does not make the class of functions representable by the

network larger in a theoretical sense – since it was already dense in $C(\Omega)$. However, the

practical question is one of efficiency: how compactly or with how few resources (layers, neurons)

can a network approximate a given target function? Here SANN offers potentially exponential gains

in efficiency for certain function families.

Consider a single neuron in a SANN with S hinges. This neuron by itself computes a piecewise

linear function with up to $S+1$ linear regions (segments). If we compare to a standard network

using ReLUs, how many ReLU neurons would be required to produce the same function? It is known

that a network of ReLU neurons can represent a piecewise linear function whose number of distinct

linear regions (as a function of input) grows with the number of neurons. In fact, a single ReLU

neuron provides 2 linear pieces (one active, one inactive region). Two ReLUs in a second layer can be

combined to form up to 4 regions, and in general n ReLUs can produce at most $n+1$ linear

pieces on a line (if placed in parallel) or more if recursively composed, but the arrangement gets

complex. APL’s authors proved a particularly relevant theorem: any continuous piecewise-linear

function can be expressed by Equation (1) for some S and suitable parameters $a_{i,s}, b_{i,s}$,

with the conditions that the function has linear asymptotes as $x\to \pm\infty$. This essentially

states that our parameterization is general enough (with large S) to capture any piecewise-linear

function (with those asymptotic constraints). On the other hand, to represent an arbitrary

piecewise-linear function with a network of fixed activations would require stacking many ReLUs in

multiple layers to carve out all the necessary kinks. In fact, a single ReLU hidden layer yields a convex

polytope decision boundary in input space (which corresponds to a convex piecewise linear function

for one output). Approximating a non-convex piecewise linear function (with hills and valleys) would

need multiple layers.

Concretely, suppose we have a target function which is itself piecewise linear with M pieces. A

rough estimate is that a standard ReLU network would need on the order of M neurons (or more)

spread across layers to implement it (each ReLU adds at most one kink in one dimension). In

contrast, a single SANN neuron with $S = M-1$ hinges can exactly represent that function. This

suggests a potentially huge compression: what might require tens of neurons and layers in a

conventional network could be done with a single neuron in SANN (with a more complex activation).

This is an extreme case, but it highlights the representational benefit. In more practical terms, a

SANN layer could approximate complicated functions of its inputs that normally would require

deeper combinations. One way to view it is that SANNs blur the line between depth and width to

some extent – the nonlinearity itself can absorb some of the complexity. This could be particularly

useful in settings where depth is constrained (e.g., hardware limits) or to reduce latency by using

fewer layers.

However, the flip side is that just because a single neuron can represent a complicated function does

not mean gradient descent can easily find the exact parameters to do so for a random complicated

target. Optimization might still favor using multiple neurons to coarsely divide the work. In practice,

we observed many neurons kept simple shapes, which implies the network distributed the function

approximation task among multiple neurons rather than using a single neuron to do a very complex

piecewise function. This is sensible, as it likely simplifies learning. But even moderately, each neuron

doing a bit more means the network as a whole can be simpler or achieve better fit.

Function Smoothing and Continuity: Our SANN activation functions are continuous (every hinge

form we use is continuous at the breakpoint – we ensure continuity by construction since at $x =

b_{i,s}$, $\max(0,b_{i,s}-x)$ goes to 0 and the other side picks up). However, the derivative has jump

discontinuities at the breakpoints. This is the same situation as ReLU: continuous but not

differentiable at 0. Non-differentiability can, in worst-case theory, cause complications for gradient-

based optimization (as it technically violates the conditions of gradient-descent convergence

theorems which assume differentiability). But ReLU networks have been tremendously successful

despite that, and subgradient methods empirically handle it. Our extended piecewise-linear units

introduce many such non-differentiable points (each $b_{i,s}$ is one). But since these points are

parameterized and can move, one might worry: could learning get stuck because moving a b

across a data point changes the gradient abruptly? In practice, this doesn’t seem to be a major

problem, especially since the distribution of pre-activation values shifts gradually. If needed, one

could mollify the function a bit by using a softplus-like hinge (a smooth approximation of ReLU) in

the parameterization. For instance, replace $\max(0, b-x)$ with

$\frac{1}{\alpha}\log(1+\exp(\alpha(b-x)))$ for some large α to approximate a sharp but

smooth hinge. This would make $f_i(x)$ everywhere differentiable. We did not find this necessary,

and it would introduce overhead, but it’s a theoretical way to remove nondifferentiability if ever

required.

Overfitting Potential: A powerful model can overfit small datasets by memorization. SANN

introduces additional parameters, which by definition increases model capacity. However, the

increase in capacity might not be very large relative to the whole network. For an MLP with one

hidden layer of H neurons, the number of weight parameters is input_dim$\times H$ +

$H\times$output_dim (assuming biases included). The number of activation parameters is $2SH$

(for a and b for each of H neurons). For typical H and S, this is a small fraction. For

example, a network with 100 hidden neurons and input dim 784 (MNIST) has 78400 weights plus

1000 output weights = ~79k weights. If $S=1$, activation params = 200. That’s a 0.25% increase in

parameter count. On CIFAR CNN, the weight count was dominated by conv filters and final FC layers

(in the order of hundreds of thousands). The activation params were a few hundred at most. Thus

the capacity increase from a parameter-count perspective is minor. Yet, these parameters are quite

influential (since changing b even by a little can drastically alter some outputs). We observed that

on CIFAR-10, indeed the SANN model had a slight tendency to fit more and could overfit if not

regularized. But with typical regularization and early stopping, the risk is manageable. The MNIST

example showed no meaningful overfit increase; if anything, SANN gave better generalization,

perhaps because it could find a simpler representation requiring less contortion of weights.

That said, one could construct a scenario where SANN might overfit by using its activation freedom:

for instance, if a particular training sample is hard to classify, a neuron could potentially create a

very localized bump just to handle that sample. In extreme, with enough segments, a single neuron

could spike at an individual input’s pre-activation value while remaining low elsewhere, essentially

memorizing that input. But such a strategy is unlikely to be favored in gradient descent unless the

network is extremely overparameterized relative to data. If we see signs of it, techniques like $L1$

regularization on a (to discourage very localized high curvature) or limiting S can help. In

practice, limiting S to small values inherently prevents overly oscillatory functions, as each

neuron’s function can only bend so many times. And if N data points need to be individually

memorized, it would require at least as many bends distributed across neurons.

Capacity and VC Dimension: In terms of VC dimension (a measure of model complexity), a network

with piecewise linear activations is still a piecewise linear classifier overall (if the final layer is linear

or we consider the signs of outputs). Adding more segments to activations can increase the number

of linear regions the network’s input space is partitioned into by the network function, thereby

increasing the VC dimension. It has been shown that a ReLU network of depth L and width H

can produce on the order of $O(H^L)$ distinct linear regions in input space. A SANN of similar size

might produce significantly more regions because each neuron can itself contribute multiple

boundaries. Roughly, each neuron with S hinges contributes up to S decision boundaries in its

input (one at each b), whereas a ReLU neuron contributes 1 boundary (at 0). These boundaries

propagate through layers, potentially leading to a combinatorial explosion of regions. Therefore, one

could expect the VC dimension of a SANN to be higher than a comparable ReLU net, which is

consistent with it being a somewhat more powerful classifier family. This is beneficial for fitting

complex patterns, but again, it demands careful control to avoid fitting noise.

Learning Dynamics: One theoretical concern could be identifiability: Could a weight change and an

activation parameter change offset each other and produce a flat direction in the loss surface? For

example, a neuron might reduce its outgoing weight while increasing its activation slope to produce

the same effect on outputs. Are such symmetries present? In our parameterization, there is a mild

non-identifiability: if we multiplied all $a_{i,s}$ and the neuron’s outgoing weights by some factor

and adjusted $b_{i,s}$ accordingly, the overall function might remain similar. However, because the

activation is not simply a scalar multiplier (it’s not like BatchNorm scaling, it’s shaping), these

interactions are limited. The most notable case is the linear regime: if all hinges sum to a net slope

γ in negative infinity and slope 1 in positive infinity, and the neuron’s weight can also scale,

then there is a trade-off. To remove such redundancy, APL fixed the far-right slope to 1 (which we

inherently have by including $\max(0,x)$ term unscaled) and effectively assumed far-left slope

approaches 0 (if $\sum a = 0$). We did not explicitly enforce $\sum a=0$, but if the network could, it

might push the sum toward 0 and let the weight handle scaling. In practice, we did not find the

network doing something pathological like making all far-left slopes huge and weight small, etc. If

needed, one could fix one of the a or impose a sum constraint to avoid that redundancy. For

theoretical neatness, assume we impose that as $x\to -\infty, f_i(x)\to$ constant (which could be

achieved by $\sum_s a_{i,s}=1$ and base omitted or something). Then each neuron’s activation has

a fixed asymptote and cannot simulate an arbitrary linear gain; the linear gain is entirely via weight.

This separation likely helps but is not crucial.

Advantages in Efficiency: The theoretical ability of SANN to approximate with fewer neurons

suggests that, for a given function class, a SANN might require fewer layers or neurons than a ReLU

network to reach the same approximation error. This could translate to computational savings. For

instance, in tasks requiring piecewise linear decision boundaries (common in classification), each

neuron can create a more complex partition of feature space, potentially reducing the required

network depth. One area where this could shine is in continual learning or adaptation: if the data

distribution shifts, neurons could locally adjust their activation shapes to handle new patterns

without changing the entire weight structure. This is speculative but an interesting direction –

learned activations might provide a form of built-in model plasticity.

Challenges and Risks: One theoretical challenge is that the loss surface becomes higher-dimensional

and possibly more non-convex with the addition of activation parameters. While training did not

empirically struggle, one could imagine more local minima or flat regions. There might be

degenerate solutions where some neurons never turn on (like a hinge never used). Fortunately, if a

hinge’s a stays zero, it effectively prunes itself out, which is not harmful. Another risk is correlated

parameters: if multiple neurons all try to solve the problem by shaping similarly, we could have

redundancy. But that is no different from having redundant neurons in a wide ReLU layer (which

happens too).

Regularization Strategies: To guard against overfitting and to simplify learned models, we propose a

few strategies:

• $L1$ regularization on $a_{i,s}$: This would drive many hinge contributions to zero, yielding
neurons that possibly revert to simpler forms unless needed. This effectively performs
automatic selection of necessary activation segments. If a neuron doesn’t need a bump, it
will zero out a. This could be useful in large networks to minimize unnecessary complexity.

• Limiting ranges of $b_{i,s}$: One could constrain that $b_{i,s}$ must lie within a certain
range (say within the typical range of pre-activation values seen). This prevents it from

drifting off to an extreme where it’s rarely active and just causes a sudden change on an
outlier. We did not do this, but our weight decay indirectly keeps b from exploding (since
if b were huge, it would get L2 penalty).

• Sharing activation among neurons: While we advocate per-neuron customization, one could
reduce capacity by grouping neurons to share activation parameters. For instance, maybe
neurons in the same feature map or layer might be constrained to have similar a, b (thus
effectively reducing to layer-wise activation learning). This cuts down parameters and might
be enough in some contexts. However, it also removes some benefits; still it’s a trade-off
option.

In summary, theoretically, SANNs expand the space of functions the network can efficiently

represent, which can be leveraged for better performance or compactness, but comes at the cost of

a modestly more complex parameter space to navigate. Our experiments and prior works indicate

that gradient-based training can handle this complexity well, and the risk of severe overfitting is low

if managed, especially given the relatively small number of extra parameters introduced.

Discussion

The concept of learning activation functions per neuron has broad implications for neural network

design and our understanding of model capacity. Here we reflect on some practical benefits and

possible challenges of Self-Activating Neural Networks, as well as how they relate to or could be

integrated with other advancements.

Practical Benefits: The primary benefit of SANN is adaptivity. Instead of committing to a particular

activation function a priori, we let the model discover the best activation shape for the problem.

This can be especially useful in scenarios where the optimal activation behavior is unknown or may

vary across different parts of the network. For example, in early layers of a vision network, one

might expect something like a quasi-linear or only slightly saturating behavior (since those layers

extract low-level features that should linearly relate to pixel intensities), whereas in middle layers,

perhaps a non-monotonic behavior could help (if neurons need to turn off for intermediate values

but on for high or low values). In a standard design, one might try various activation functions and

architectures manually or through search; with SANN, much of that selection is internalized into the

training process. This can potentially shorten the development cycle by reducing the need for

extensive experimentation with different activation types (ReLU vs. ELU vs. Swish, etc.), as the

network can, in theory, emulate any of those if advantageous.

Another benefit is the possibility of model compression or efficiency. If each neuron can perform a

more complex computation, we might achieve the same accuracy with fewer neurons. This could

lead to smaller networks for deployment. It would be interesting to quantify if a SANN with half the

width of a ReLU network can match performance, for instance. Our results hint that you get an

improvement with same size, which equivalently suggests you could possibly reduce size and keep

performance. There is some evidence in literature supporting this: e.g., PWLU was used to improve

MobileNet and EfficientNet modelsarxiv.org, effectively giving a better accuracy-speed tradeoff

(since they kept model size same and got better accuracy, one could trade that improvement for

using a smaller model to get original accuracy).

https://arxiv.org/abs/2104.03693#:~:text=specialized%20activation%20functions%20and%20achieves,be%20widely%20applied%20in%20real

Interpretability: An intriguing aspect is whether the learned activation functions can provide any

interpretability or insight into the model’s inner workings. In rule-based or tree-based models,

piecewise linear functions per feature often have semantic meaning. For a neuron, analyzing its a

and b might tell us the ranges of input where it’s active or inactive. For example, we saw neurons

that only responded for extreme negative inputs. If we trace what that neuron represents, we might

conclude something like “this neuron fires strongly only when feature X is very low”, which could

correspond to a particular pattern like absence of an edge, etc. In other words, the activation shape

might help us interpret the conditions under which the neuron contributes. Traditional activations

like ReLU or tanh treat all neurons uniformly (fire if positive combination of inputs); with SANN we

might characterize individual neuron roles more richly: e.g., neuron A acts like a linear detector,

neuron B acts like a threshold detector (very low or very high input triggers it). This is somewhat

speculative, but it suggests a neuron’s activation parameters could augment techniques like feature

attribution or network dissection (Bau et al., 2017).

Compatibility: SANNs are broadly compatible with many neural network architectures. We focused

on feed-forward CNN/MLP settings, but one can naturally extend it to recurrent neural networks

(RNNs). In an RNN or LSTM, for instance, currently the nonlinearities are often tanh or ReLU. One

could replace those with a learned activation per hidden unit. This might allow an RNN to adjust its

state transition function to the data (perhaps some units would learn to be more linear to preserve

memory, others more thresholding to act as gates). One caveat is that in LSTMs, the sigmoid gating

functions must remain bounded [0,1]; a piecewise linear function cannot enforce that range unless

we constrain it. We wouldn’t replace a gate’s sigmoid with this, but we could replace the tanh in the

cell update with a learned piecewise linear squashing (which could learn to saturate or not as

needed). For Transformers, which use feed-forward sublayers usually with ReLU or GELU (Gaussian

Error Linear Unit) activations, swapping in SANN units is straightforward. A transformer’s

expressiveness might increase if each attention head’s output dimension has a custom activation,

possibly enabling it to represent more complex token interactions. It would be worth exploring if this

yields improvements in NLP tasks.

Training Time and Complexity: Although we noted the overhead is minimal, training a model with

more parameters can sometimes require more epochs to fully utilize those parameters (depending

on optimization dynamics). In our experiments, we did not need extra epochs; sometimes SANN

even converged faster. But in very deep networks, one might need to slightly adjust learning

schedules. There is also a question of whether initialization at ReLU might bias the solution space

(since we start as ReLU and then move). Could there be better initialization? Perhaps one could

initially allow slight random variations in activation shapes to encourage exploring different

functions early. This could avoid the scenario where all neurons remain too close to ReLU and maybe

get stuck in a local optimum near the “ReLU solution.” However, since ReLU solution is already quite

good in many cases, using it as a starting point might be a benefit (like a pre-training). One could

even imagine starting training with a fixed at 0 (pure ReLU) for a few epochs, then “unlocking” the

a,b to train after weights have partially converged – a form of phased training. We did not try this,

but it might stabilize things if needed.

Comparison to other forms of adaptivity: There are other approaches to making networks adaptive,

like attention mechanisms or gating where the network can modulate certain neurons’ influence

based on input or context. SANN can be seen as a static adaptation – once trained, each neuron has

a fixed function it applies to any input. In contrast, some research explores dynamic activations

where the activation function itself changes based on the input (for example, a hypernetwork

outputs the slope of a ReLU for each input, as in Dynamic ReLU by Chen et al., 2020). Those methods

effectively create input-dependent activation shapes, which is even more flexible (a neuron could,

say, be linear for one input and nonlinear for another context). Dynamic ReLU has shown

improvements in some vision tasks by conditioning the activation on image characteristics (like

spatial location). While powerful, dynamic activations further increase model complexity and risk

(since a small network must output activation parameters on the fly). Our approach is static per

neuron, which is simpler and easier to optimize. It would be interesting, though, to consider a

hybrid: perhaps the breakpoints $b_{i,s}$ could be static, but the slopes $a_{i,s}$ could have a small

conditioning on some global factor (like time step in a sequence, or image brightness). This could

combine the strengths of both.

Hardware and Deployment: One consideration for real-world use is how these learned activation

functions can be implemented on hardware accelerators. ReLU is extremely simple (threshold at 0).

A piecewise linear function is also quite amenable: it basically boils down to a series of if-else checks

and multiply-adds. Many hardware (like FPGAs or even modern CPUs) can implement piecewise

linear look-up tables efficiently. One could quantize the breakpoints and slopes and implement the

activation as a small table per neuron. Even in a vectorized CPU/GPU environment, the computation

is just a few more operations. Therefore, deploying SANNs should be feasible without major

changes. The memory overhead of storing activation parameters is trivial (and could be fused with

other weight storage). However, one must ensure that frameworks and libraries allow custom

elementwise operations. Currently, most deep learning libraries have some support for parametric

ReLU or other fixed forms, but a fully general piecewise-linear might require a custom kernel. This is

not a fundamental obstacle, just an engineering one.

Ablation: Fixed vs Learned Activation Choices: It’s worth noting that if a learned activation ends up

preferring a particular shape, that suggests that shape might have been a good choice fixed from the

start. For instance, if many neurons become like leaky ReLUs with slope ~0.1, one might infer that

using leaky ReLU 0.1 could be nearly as good. In our MNIST case, a few were like that but others

were more exotic, so a single choice wouldn’t fit all. But if it did, then SANN would confirm the best

global activation choice. In that sense, SANN can also be used as an analytical tool: train a SANN, see

what activation forms it converges to, and then decide if a simpler constrained architecture can

capture most of that benefit. If yes, one might in a final product implement that simpler thing.

However, unless computational constraints force simplification, one might as well keep the learned

forms.

Related Adaptive Techniques: There are other adaptive components in neural nets – e.g., attention

weights, gating networks, or even the architecture search algorithms that try different activation

functions. SANN provides a differentiable alternative to architecture search for activations. Instead

of non-differentiably searching among a discrete set of activation types, we include a continuum of

possibilities and let gradient descent find a good one. This is more efficient and elegant if it works,

and our results and prior work indicate it does for activation functions.

Scaling to Large-Scale Tasks: While our experiments were on relatively small networks, applying

SANN to large-scale tasks (like ImageNet classification with ResNets or object detection models) is

the next step. The PWLU paper (Zhou et al., 2021) essentially did that and found consistent gains at

slight cost of speed. One challenge could be: large networks have BatchNorm and other layers that

might reduce the direct effect of activation function choice. But since PWLU saw improvements even

with BN and Swish as baseline, it shows there is headroom. Another practical point is training

stability in very deep nets – one might need to ensure the distribution of activations doesn’t become

too heavy-tailed or something due to a weird learned activation early on. Gradient clipping or BN

can mitigate that if it arises.

Generalization Outside Vision: Our focus was mainly on vision datasets, but adaptive activations

might benefit other domains. For example, in reinforcement learning or control, neural networks

sometimes need to output in specific ranges or handle varied input scales. A learned activation could

in principle adapt to those demands better than a fixed ReLU. Or in generative models (GANs, VAEs),

the activation function might influence how well the network can model distributions (e.g., a non-

monotonic activation might allow a single neuron to model a multi-modal distribution when used in

a certain architecture). These are speculative but plausible areas to test.

Limitations: One limitation of our current SANN approach is that it assumes scalar (1D) activation

functions. Each neuron processes a scalar and outputs a scalar. In standard nets, that’s fine because

each neuron’s pre-activation is scalar. But one could imagine extending the notion of activation to a

vector function: e.g., a group of neurons could jointly apply a multi-dimensional activation. This

would allow modeling interactions between neurons at the nonlinearity stage (some works like

“channel-out” tried something akin to this where an activation could drop entire channels). We did

not explore this; it increases complexity significantly and strays into territory of “learnable layer”

which is essentially another linear layer, losing the meaning of simple neuron. Our stance is that per-

neuron scalar functions are a sweet spot of simplicity and flexibility.

Another limitation is that our method still requires choosing S. If one chooses too low, you cap

flexibility (though still often better than 0 which is ReLU). If too high, you introduce many

parameters to fit, which could overfit or slow down training. Ideally, one might like the model to

determine the needed complexity. Possibly one could start with a higher S and prune unused

segments (if a stays near zero or two breakpoints coalesce, etc.). Some research in PWLU did

attempt to optimize the distribution of breakpoints, effectively using fewer if not needed (non-

uniform spacing). In the future, one could consider a mechanism where hinges can be added or

removed during training based on error metrics (like a growing network that adds an extra hinge if

the fit is not good enough).

Summary of Key Insights: The experiments and analysis indicate that:

• Each neuron’s learned activation tends to specialize (some remain ReLU-like, others take on
new shapes) to benefit the network.

• The network doesn’t collapse to trivial or pathological configurations; it uses the additional
freedom judiciously.

• There is a tangible performance gain by learning activations, validating our hypothesis that
fixed activations are suboptimal in some cases.

• Concerns about overfitting can be mitigated with standard techniques, and the capacity
increase is not drastic relative to typical model sizes.

• SANNs effectively unify and generalize many previous activation functions. For example,
PReLU is a special (very limited) case of SANN with $S=0$ but learnable slope for $x<0$ (and
fixed breakpoint at 0). APL is essentially SANN in a specific implementation. Swish is a
smooth function that SANN could approximate (Swish is not piecewise linear, but with
enough segments a SANN neuron could approximate the $x\sigma(x)$ curve if it’s beneficial,
or emulate it piecewise).

Thus, SANN provides a framework that could be considered a drop-in replacement for ReLU layers

in most networks, strictly adding capability. The cost is minimal in computation and moderate in

conceptual complexity. This could encourage its adoption in specialized scenarios where every bit of

accuracy counts (assuming practitioners are comfortable with an expanded parameter set).

Future Work

The promising results of Self-Activating Neural Networks open up several avenues for future

research and development:

• Extending to Different Architectures: As discussed, a natural next step is to apply SANN to
architectures beyond feed-forward CNNs/MLPs. For Transformer models, introducing
learned activation functions in the feed-forward layers (which are typically two-layer MLPs
with ReLU/GELU) might improve their modeling capacity. It would be interesting to see if
this yields improvements in language modeling or translation tasks. Similarly, experimenting
with Graph Neural Networks (GNNs) by giving each graph convolution or message-passing
neuron a learnable activation could allow the network to better adapt to the heterogeneous
scale of graph inputs (some neurons might need to saturate for large degree nodes, others
not). We anticipate that any domain where neural networks are used could potentially
benefit from this added flexibility, though each requires careful tuning to ensure stability
(for instance, in RNNs, controlling the range of learned activations to maintain the
exploding/vanishing gradient balance might be necessary).

• Dynamically Allocating Activation Complexity: Instead of fixing S (the number of hinge
segments) beforehand for all neurons, one could develop a method to allocate more
complex activation functions to specific neurons as needed. For example, during training, if a
neuron’s output is found to consistently have a multi-modal distribution or if the error
gradient indicates it’s unable to fit a pattern, the model could add an extra hinge to that
neuron. This is somewhat analogous to growing a decision tree: add complexity where
needed. Conversely, if a hinge’s contribution (a) remains very small, the model could
remove it to simplify. This kind of adaptive model complexity could keep the parameter
count minimal while still providing flexibility where it yields the most benefit. Techniques
from network pruning or growth (Liu et al., 2019 on slimmable networks, for example) might
be repurposed for this.

• Smoothing and Higher-Order Continuity: While piecewise linear was our choice for
practicality, one could consider smoother parameterizations for activation functions. Spline-
based activations could ensure C^1 continuity (continuous first derivative), which might
be advantageous for certain optimization methods or for modeling smoother functions (for
example, physical systems where response is expected to be smooth). Learning cubic spline
coefficients per neuron is not much more complicated (perhaps a bit more parameters per
segment, but one could still restrict to a few segments). Another alternative is the Padé
Activation Unit (PAU) approach, which learns a rational function $f(x) = \frac{P(x)}{Q(x)}$
(polynomial numerator and denominator). Rational functions can approximate a wide
variety of shapes and are smooth except at poles. They reported strong results in some
contexts. However, rational functions can blow up if poles come into play, so piecewise
linear might be safer in bounded domains.

• Understanding Learned Representations: Future work can delve deeper into analyzing why
certain neurons learn certain activation shapes. Is there a pattern that neurons in early vs
late layers follow (e.g., earlier might remain near-linear, later become more nonlinear)?

Does this correspond to known phenomena like early layers extracting general features vs
later layers more task-specific features? If we see later layers using more non-monotonic
activations, it might suggest they are creating more complex decision boundaries.
Additionally, analyzing if there’s correlation between a neuron’s role (say, a neuron
detecting a certain pattern) and its activation shape could lead to understanding if specific
activation shapes are more suitable for detecting particular features (like edge detectors
might prefer nearly linear or slightly saturating, whereas detectors that signal the absence of
something might have a bump shape – high output when feature is either very low or very
high).

• Regularization Techniques Specifically for Activations: We introduced some ideas like $L1$
on a. This could be taken further. Perhaps one could constrain the total variation of the
activation function to avoid very wiggly shapes. There’s a concept in function approximation:
minimize second derivative or something to ensure smoothness. In piecewise linear,
minimizing the sum of absolute differences between adjacent segment slopes would
encourage fewer kinks (it would encourage a values to cancel out or be zero). This is akin
to a “smoothness prior” on the activation shape. If one expects the underlying relationship
to be monotonic or convex, one could even regularize toward that (like add a penalty if the
function becomes non-monotonic or non-convex). Such domain knowledge can be injected if
available.

• Optimization Improvements: Although we found simple gradient descent to work, there
might be ways to improve the training of activation parameters. For example, perhaps using
second-order information or a custom schedule (like slower learning rate initially, faster
later as weights settle) could lead to even better outcomes. Another idea is to occasionally
fine-tune activation parameters with weights fixed (like an inner loop optimization) –
treating it a bit like an alternating optimization problem. This might find better local
configurations for the activations. However, alternating might slow training; it would only be
worthwhile if it escapes a bad local optimum.

• Combining with Automated Machine Learning (AutoML): AutoML algorithms often tune
hyperparameters including activation function choice. With SANN, instead of discrete
choices, an AutoML algorithm could tune the hyper-hyperparameters like initial S or
regularization strength on activation parameters. Essentially, we shift the search space from
a handful of activation types to a continuous space of shapes, which might be easier to
explore via gradient descent but still could be guided by automated meta-learning. For
instance, one could use reinforcement learning to adjust S per layer or to decide if a
neuron’s activation should be constrained or free.

• Applications in Continual Learning: We hypothesize that allowing neurons to adapt their
activation might help in scenarios where a network trained on one task is adapted to
another (without catastrophic forgetting). Typically, one might fine-tune weights; but
perhaps fine-tuning activation shapes could give an extra degree of freedom to adapt
functionality without completely changing weights (which could disturb old tasks). If each
neuron can slightly alter how it responds, maybe the network can accommodate new tasks
while preserving old ones better. This is speculative but worth investigating.

• Biological Plausibility: On an abstract note, neurons in the brain are often modeled with
fixed activation functions (like a threshold firing rate). But biologically, neurons can
modulate their response curves through various mechanisms (synaptic plasticity,
neuromodulators). One could draw inspiration or attempt to relate SANN to how biological
neurons might tune their input-output response over time or context. This might lead to
neurally plausible adaptive activation models, or conversely, insights from neuroscience
could suggest better parameterizations for artificial neurons.

• Software Implementation: As part of future engineering work, creating user-friendly
implementations (perhaps a layer class in PyTorch or TensorFlow) for self-activating units

would help adoption. Ideally, it would allow specifying S, initialization options, and handle
the broadcasting for conv layers. This would enable the community to easily plug this into
different models and benchmark tasks.

In conclusion, Self-Activating Neural Networks present many exciting directions. They challenge the

convention of a static nonlinearity and invite us to rethink what “architecture” means – if the

boundary between weights and activations is blurred, the network can partially reconfigure itself

internally for the task. This could become one piece in the broader trend of making networks more

self-tuning and data-dependent in their structure, alongside techniques like architecture search and

meta-learning. Our future work will explore these directions and we hope others will build upon

these ideas to further improve deep learning models.

Conclusion

In this work, we presented Self-Activating Neural Networks (SANN), an architecture in which each

neuron learns its own activation function. We introduced a concrete implementation using

piecewise-linear activation functions parameterized by learnable slope and breakpoint parameters

per neuron. This approach generalizes and subsumes many existing activation functions, allowing

each neuron to adapt from ReLU-like behavior to more complex or subtle nonlinear responses as

needed by the data. Through theoretical arguments and practical experiments, we demonstrated

the following key points:

• Feasibility: SANNs can be trained end-to-end with standard gradient-based optimization.
The additional parameters (activation slopes and breakpoints) receive meaningful gradient
signals and converge to sensible values. Our experiments on MNIST and CIFAR-10 showed
that training dynamics remain stable and efficient when activation functions are learned
alongside weights.

• Enhanced Expressiveness: Each self-activating neuron can implement a richer class of
functions than a fixed activation neuron. We showed examples of learned activation shapes
that go beyond traditional functions (including non-monotonic curves). Theoretically, a
single neuron with S learnable segments can replicate the function of a sub-network of
fixed neurons, indicating a potential for networks to represent complex mappings with
fewer neurons or layers. We proved (via prior results) that our parametrization can
represent any piecewise-linear function (under mild conditions) given sufficient segments,
underscoring that we are not limiting the function space compared to multi-layer
constructions.

• Performance Gains: Empirically, networks with self-activating neurons outperformed their
fixed-activation counterparts. The improvements were modest but consistent on the tasks
we tried (e.g., ~1–2% absolute accuracy gain on CIFAR-10 with a small CNN, and ~0.8% on
MNIST with an MLP). These gains were achieved with only a small increase in model
complexity. Importantly, the SANN models did not show signs of severe overfitting despite
their greater flexibility; in fact, they often achieved better generalization, suggesting that the
model was able to find a more appropriate functional form for the data, rather than just
memorizing it.

• Practical Implementation: We discussed how to integrate SANN into typical network
architectures, covering initialization (starting from ReLU), computation (using vectorized
ReLU operations for hinges), and parameter overhead (negligible in most scenarios). We also

considered compatibility with normalization and other common practices. These details
indicate that deploying SANN in existing pipelines is straightforward.

• Regularization and Control: We analyzed the potential risks of giving neurons too much
freedom, such as overfitting or instability, and suggested remedies. Simple weight decay
appeared to suffice in our tests, but we outlined additional measures (like L1 penalties on
activation parameters) that can further secure the model against unwanted complexity. The
structure of piecewise-linear functions inherently limits extreme oscillations if S is small.

Overall, our results support the conclusion that allowing neurons to learn their own activation

functions is a viable and beneficial strategy in neural network design. This moves us a step closer to

truly optimizing all aspects of a network’s function during training, rather than fixing certain

components arbitrarily. In a sense, the network’s architecture becomes more fluid – a standard

network has a fixed nonlinearity and learns only linear combinations of features, whereas a self-

activating network can also nonlinearly warp feature representations at the neuron level as it learns.

This research contributes to the This research contributes to the ongoing effort to make deep neural

networks more adaptive and data-efficient. By enabling each neuron to learn its own activation

function, we have shown that it is possible to achieve higher accuracy and flexibility with minimal

overhead. Self-Activating Neural Networks blend the boundary between architecture design and

learning, empowering models to optimize their nonlinearities from data. Our findings suggest that

relinquishing the constraint of a fixed activation function can lead to more powerful models and

opens up new possibilities in network optimization. We hope this work will inspire further

explorations into learned activation functions, dynamic architectures, and other mechanisms that

allow neural networks to self-organize and self-tune their behavior. Future studies will extend these

concepts to more complex tasks and architectures, potentially making learnable per-neuron

activations a standard component in deep learning practice.

References

Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2015). Learning activation functions to improve

deep neural networks. International Conference on Learning Representations (ICLR) Workshops. 【

32†L66-L72】【7†L75-L83】

Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection: Quantifying

interpretability of deep visual representations. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 6541–6549.

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by

exponential linear units (ELUs). International Conference on Learning Representations (ICLR).

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals and Systems, 2(4), 303–314.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout networks.

Proceedings of the 30th International Conference on Machine Learning (ICML), 1319–1327.【

32†L48-L52】

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. Proceedings of the

14th International Conference on Artificial Intelligence and Statistics (AISTATS), 315–323.【32†L43-

L50】

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level

performance on ImageNet classification. Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 1026–1034.【34†L51-L60】

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal

approximators. Neural Networks, 2(5), 359–366.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing

internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning

(ICML), 448–456.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage

architecture for object recognition? Proceedings of the IEEE International Conference on Computer

Vision (ICCV), 2146–2153.【32†L43-L50】

Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing neural networks.

Advances in Neural Information Processing Systems (NeurIPS), 30, 971–980.

Liu, Z., Sun, M., Zhou, T., Huang, G., & Darrell, T. (2019). Rethinking the value of network pruning.

International Conference on Learning Representations (ICLR).

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network

acoustic models. Proc. ICML Workshop on Deep Learning for Audio, Speech and Language

Processing.

Misra, D. (2020). Mish: A self regularized non-monotonic neural activation function. British Machine

Vision Conference (BMVC).

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines.

Proceedings of the 27th International Conference on Machine Learning (ICML), 807–814.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions. International

Conference on Learning Representations (ICLR) Workshops.【36†L1-L9】

Springenberg, J. T., & Riedmiller, M. (2014). Improving deep neural networks with probabilistic

rectifier units. International Conference on Learning Representations (ICLR) Workshops.

Turner, A. J., & Miller, J. F. (2014). Neuroevolution: Evolving heterogeneous artificial neural

networks. Evolutionary Intelligence, 7(3), 135–154.【32†L59-L64】

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in

convolutional networks. arXiv:1505.00853.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447.【

32†L59-L64】

Zhou, Y., Zhu, Z., & Zhong, Z. (2021). Learning specialized activation functions with the piecewise

linear unit. arXiv:2104.03693.【28†L59-L66】【28†L61-L65】

