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Abstract: Neural networks traditionally use fixed activation functions (ReLU, tanh, etc.) for 

all neurons, which may limit representational flexibility. We propose Self-Activating Neural 

Networks (SANN), a novel architecture in which each neuron learns its own activation 

function. In the proposed approach, every neuron’s activation is a parametrized piecewise-

linear function learned via gradient descent alongside network weights. This per-neuron 

adaptive activation enables the network to learn the optimal nonlinearity for each neuron 

from data, rather than relying on a one-size-fits-all activation. We detail the architecture and 

learning algorithm for these self-activating units, including the mathematical formulation of 

the piecewise-linear functions and their gradients. Experiments on benchmark tasks (MNIST 

and CIFAR-10) demonstrate that SANN can outperform networks with fixed activations 

(e.g., ReLU), yielding faster convergence and higher accuracy. We present training and 

validation curves, showing that SANN maintains good generalization without overfitting. 

Theoretical analysis indicates that SANN significantly enhances expressiveness, as each 

neuron can implement a flexible continuous piecewise-linear mapping, potentially reducing 

the depth or width needed to approximate complex functions. We discuss practical 

implementation details, regularization methods to prevent overfitting, and the broader 

implications of making activation functions learnable. This work opens the door to a new 

class of neural networks that learn both weights and activation shapes, potentially leading to 

more compact and adaptive models. Future directions include extending self-activating units 

to recurrent, graph, and transformer architectures. We conclude that learning activation 

functions per neuron can be a powerful approach to increase neural network flexibility and 

performance, moving beyond the constraints of fixed activation functions. 

Introduction 

Deep neural networks owe much of their success to the choice of activation functions that 

introduce nonlinearity into neurons’ outputs. Historically, activation functions such as the 

sigmoid and hyperbolic tangent were popular but suffered from saturation at extreme inputs, 

causing vanishing gradients in deep networks. The advent of the Rectified Linear Unit 

(ReLU) addressed this issue by using a simple piecewise-linear function f(x)=max(0,x). The 

ReLU significantly improved training dynamics by alleviating vanishing gradients and 

enabling deep networks to learn effectively (Glorot et al., 2011). ReLU-based networks (e.g., 

Krizhevsky et al., 2012) became easier to optimize and achieved state-of-the-art results in 

image recognition. Due to its simplicity and effectiveness, ReLU has become the de facto 

default activation in modern deep learning. Nevertheless, fixed activations like ReLU may 

not be optimal for all tasks or all neurons. Using the same activation shape (such as ReLU’s 

linear-for-positive, flat-for-negative response) uniformly across all neurons can constrain the 

network’s expressive power. 

Recent research has explored alternatives to ReLU, including leaky ReLUs (Maas et al., 

2013), parametric ReLUs (PReLU) (He et al., 2015), exponential linear units (ELU) (Clevert 

et al., 2016), scaled ELU (SELU) (Klambauer et al., 2017), and swish (Ramachandran et al., 

2017). Many of these provide modest performance gains in certain settings, but no single 



fixed function has emerged as universally superior to ReLU. Moreover, these functions are 

still globally applied—every unit in a layer (or even the whole network) uses the same 

functional form (with perhaps a parameter tweak as in PReLU). This global uniformity might 

be suboptimal: different neurons, at different layers or representing different features, could 

benefit from distinct nonlinear response shapes. 

A more powerful approach is to learn the activation functions themselves from data. Early 

efforts in this direction date back to evolutionary algorithms that attempted to evolve or select 

an activation function for each neuron from a predefined set (Yao, 1999). For example, 

genetic algorithms have been used to choose among sigmoid, Gaussian, or linear activations 

for each unit. These methods demonstrated the potential benefits of heterogeneous activations 

but were limited by the discrete nature of selection and the computational cost of 

evolutionary search. Turner & Miller (2014) introduced an approach combining evolution 

with learned scaling parameters, allowing slight tuning of each chosen activation. However, 

such methods still did not fully leverage continuous activation shapes with gradient-based 

learning. 

In this paper, we propose a novel neural network architecture called Self-Activating Neural 

Networks (SANN), in which each neuron learns its own activation function during training. 

Each activation is parameterized in a flexible form and updated by gradient descent 

simultaneously with the network’s weights. Unlike prior fixed or globally parameterized 

activations, SANN endows each neuron with the capacity to shape its input-output 

relationship to best fit the data. Our specific instantiation of SANN uses parametric 

piecewise-linear functions as neuron-wise activation functions. Piecewise-linear functions are 

a natural choice because they are universal approximators for continuous functions and are 

simple, efficient, and compatible with ReLU-based optimization techniques. Notably, our 

approach is inspired by the adaptive piecewise-linear unit (APL) of Agostinelli et al. (2015), 

which first demonstrated that learning a piecewise-linear activation per neuron can yield 

state-of-the-art performance on image classification benchmarks. We extend and formalize 

this concept under the SANN framework, providing a detailed formulation, theoretical 

analysis, and new experiments and insights. 

The novelty of this work lies in proposing a fully trainable per-neuron activation architecture 

and thoroughly exploring its implications. Our contributions are summarized as follows: 

• Learning Activation Functions per Neuron: We introduce the SANN architecture 

in which each neuron has its own learnable activation function. To our knowledge, 

this represents a significant step beyond traditional networks that use one or a few 

fixed activation types globally. We formulate a flexible piecewise-linear 

parameterization that can represent a wide range of shapes (convex, concave, non-

monotonic), allowing neurons to adapt their response during training. 

• Parametrized Piecewise-Linear Units: We propose a practical parameterization for 

per-neuron activations using a sum of hinge-shaped linear pieces. This yields a 

continuous piecewise-linear function for each neuron, with only a small number of 

extra parameters per neuron. We provide the mathematical formulation, derivation of 

gradients, and a discussion of how these “activation parameters” are learned alongside 

normal weights. The approach is designed to be easily implemented in modern deep 

learning frameworks with negligible computational overhead. 

• Theoretical Analysis of Expressiveness: We analyze the expressive power of 

SANNs. We show that a single neuron in our model can approximate any continuous 



piecewise-linear function on $\mathbb{R}$ (under mild conditions) given enough 

segments, which we formally state and discuss. This implies that networks with self-

activating neurons can represent functions that would otherwise require deeper or 

wider architectures with fixed activations. We discuss how learning activations per 

neuron can reduce the network size needed for a given task, and we examine possible 

risks such as overfitting due to the increased flexibility. Strategies for regularizing the 

learned activation functions are also presented. 

• Empirical Evaluation: We conduct experiments on benchmark datasets (the MNIST 

handwritten digits and CIFAR-10 image classification tasks) to evaluate the 

performance of SANN against standard networks using ReLU or other fixed 

activations. Using identical network architectures (apart from activation mechanism), 

we compare training dynamics, convergence speed, and final generalization 

performance. Our results show that SANN consistently matches or outperforms the 

baseline networks. For example, on MNIST we achieve slightly higher test accuracy 

than a ReLU network, with faster convergence in terms of epochs. On CIFAR-10, a 

convolutional SANN model achieves a notable accuracy improvement over the ReLU 

counterpart, demonstrating the benefit of learnable per-neuron activations in a more 

complex setting. We include detailed training curves (loss and accuracy) to illustrate 

learning behavior, and we analyze the learned activation functions from trained 

models to gain insight into how they differ from fixed functions (Fig. 1). 

• Practical Considerations: We detail how SANN can be implemented and trained in 

practice. We describe initialization schemes (e.g., start with all neurons using ReLU-

like behavior), techniques to constrain or regularize the activation parameters to 

prevent pathological shapes, and the computational cost. We show that the overhead 

in parameter count is very small (on the order of a few parameters per neuron, which 

is negligible compared to weights) and that inference with learned piecewise-linear 

activations is efficient. We also discuss the integration of SANN with other 

architectural components like batch normalization and dropout. Our implementation is 

straightforward and leverages standard automatic differentiation for training the 

activation parameters. 

The remainder of this paper is structured as follows. In Section 2 (Related Work), we 

review prior activation functions and approaches to learn or adapt them, positioning our 

contribution in context. Section 3 (Proposed Methodology) describes the SANN 

architecture and the parametrized piecewise-linear activation functions in detail, including 

mathematical formulation and learning algorithm. Section 4 covers implementation details 

and practical considerations for training SANN models. In Section 5 (Experiments), we 

present empirical results on two benchmark tasks, with comparative evaluations, ablation of 

parameter choices, and visualizations of learned activations. Section 6 (Theoretical 

Analysis) discusses the expressive power of self-activating neurons and considerations 

regarding capacity and regularization. Section 7 (Discussion) elaborates on the implications, 

benefits, and potential challenges of the approach, and Section 8 (Future Work) outlines 

possible extensions of this research to other network architectures and activation function 

forms. Finally, Section 9 (Conclusion) summarizes our findings and contributions. Full 

references are provided at the end of the paper. 

Related Work 

Fixed Activation Functions: The choice of activation function has long been recognized as 

crucial for neural network performance (Hornik, 1989). Early neural networks predominantly 



used sigmoid or tanh activation functions, which introduce smooth nonlinearity but suffer 

from gradient saturation for large magnitude inputs. As networks became deeper, these 

saturating activations led to vanishing gradients, hampering training. The introduction of the 

ReLU (Jarrett et al., 2009; Glorot et al., 2011) addressed this problem by using a piecewise-

linear function that is identity for positive inputs and zero for negative inputs. By not 

squashing large inputs, ReLU allows gradients to propagate well and encourages sparse 

activations. ReLU-based deep networks (e.g., AlexNet by Krizhevsky et al., 2012) 

demonstrated unprecedented success in image classification, and ReLU quickly became the 

default activation in deep learning. Variants of ReLU were subsequently proposed to improve 

upon it. Leaky ReLU (LReLU) introduces a small slope for negative inputs instead of a hard 

zero, typically $f(x)=\max(0,x) + \alpha \min(0,x)$ with a fixed $\alpha$ (e.g. 0.01) to allow 

a small negative gradient (Maas et al., 2013). This addresses ReLU’s “dying neuron” problem 

(where a neuron stuck with negative inputs never updates). Parametric ReLU (PReLU) 

extends this idea by making the negative slope $\alpha$ a learnable parameter (He et al., 

2015). In PReLU, each channel (or neuron) can adapt its negative slope during training, 

giving a slight increase in flexibility over a fixed leaky ReLU. He et al. reported that PReLU 

improved model fitting with negligible computational cost and did not overfit, and using 

PReLUs helped their networks achieve superior results on ImageNet. Other modifications of 

ReLU include Randomized ReLU (RReLU) (Xu et al., 2015), which samples the negative 

slope from a distribution during training (and uses the average at test time) as a form of 

regularization, and exponential linear units (ELU) (Clevert et al., 2016), which replace the 

negative linear part with an exponential curve to force outputs to have mean zero, purportedly 

speeding up learning. The Scaled ELU (SELU) (Klambauer et al., 2017) further scales ELU 

outputs to preserve variance and was key in self-normalizing networks. Each of these 

innovations fixed certain drawbacks of ReLU or aimed to automatically ensure good 

initialization and normalization, but they still represent a fixed functional form (with at most 

one or two global/trainable parameters like the slope). 

Learnable Activation Functions (Global): Rather than having a rigid form, some activation 

functions introduce one or more trainable parameters shared across all neurons using that 

activation. PReLU, mentioned above, can be seen as learnable but typically the slope 

parameter is often shared per layer or channel (to avoid too many parameters) – though one 

can have per-neuron slopes, that becomes many parameters without changing the functional 

form (it’s still a “linearity plus a slope for negatives”). The Swish activation is a notable 

recent example discovered via automated search (Ramachandran et al., 2017). Swish is 

defined as $f(x) = x \cdot \sigma(\beta x)$, where $\sigma$ is the sigmoid function and 

$\beta$ is a constant or trainable scalar. In the simplest case $\beta=1$, $f(x)=x\sigma(x)$ is 

a smooth, non-monotonic function (it increases overall but has a slight bump for negative 

$x$). Ramachandran et al. found Swish by searching a space of possible activation formulas, 

and showed that replacing ReLUs with Swish units in deep networks often improves 

performance. For example, Swish outperformed ReLU by about 0.6–0.9% top-1 accuracy in 

certain ImageNet models. Swish can also be viewed as a smooth blend of identity and 

sigmoid, and it has a trainable parameter $\beta$ that controls the shape (though in practice 

$\beta$ is sometimes fixed to 1 or allowed to vary per layer). Another trainable activation is 

the Parametric Softplus (PSwish or $\beta$-Swish), which generalizes the softplus 

$f(x)=\log(1+e^x)$ by a slope parameter. Mish (Misra, 2019) is a newer self-regularized 

activation defined as $x \tanh(\log(1+e^x))$, which is fixed-form but was shown to give 

improvements on some tasks. Overall, these trainable or searched activations provide one 

global function with slight tunable aspects, which is an advance over purely fixed functions, 

but they do not fully customize the activation at the level of individual neurons. 



Learnable Activation Functions (Per-Neuron / Adaptive): A different line of research has 

aimed to increase flexibility by allowing activation functions to vary across neurons and to be 

learned from data. One simple approach is to approximate an arbitrary activation via a linear 

combination of basis functions. For example, Chen et al. (2015) proposed activation 

functions represented as linear combinations of sigmoid or Gaussians with learnable 

coefficients (a form of basis expansion). An influential approach in this category is the 

Maxout neuron (Goodfellow et al., 2013). A maxout layer has no fixed activation; instead, 

each “neuron” computes $\max(z_1, z_2, ..., z_k)$ for a set of $k$ linear pre-activations $z_i 

= \mathbf{w}_i^\top \mathbf{x} + b_i$. By taking the maximum of several affine functions, 

a maxout unit effectively produces a piecewise-linear convex function as its activation (with 

at most $k$ pieces). Maxout units can approximate any convex function and were shown to 

achieve excellent performance on various benchmarks (Goodfellow et al. reported state-of-

the-art results on MNIST, CIFAR-10, SVHN, etc.). However, maxout increases the number 

of parameters (each neuron has $k$ sets of weights) and computations, and if one wanted 

different nonlinearities at different locations in the feature map (in CNNs) it would be 

parameter-intensive. Lin et al. (2014) took a related approach in the Network-in-Network 

(NiN) architecture, where they replace the scalar activation function with a learned micro-

network (a multilayer perceptron) applied at each location of a convolutional feature map. 

For example, a $1\times1$ convolution followed by a nonlinearity can act as a learned 

activation function (NiN used a $1\times1$ conv with ReLU, essentially allowing a learned 

linear combination of channels before applying ReLU). NiN and Maxout demonstrate the 

advantages of trainable nonlinear transformations, but they drastically increase model 

complexity (each introduces many additional parameters). As a result, applying Maxout or 

NiN-style activations per neuron or per spatial location can become impractical in large 

networks. 

A more parameter-efficient strategy is to learn a parameterized function for each neuron. The 

Adaptive Piecewise Linear Unit (APL) introduced by Agostinelli et al. (2015) is a seminal 

work in this direction. An APL unit’s activation function is a piecewise-linear graph 

composed of multiple linear segments with learnable slopes and breakpoints. In their 

formulation, each neuron’s activation is expressed as a sum of “hinge” functions (ReLU-like 

components) placed at various locations. Specifically, APL defines the activation for neuron 

$i$ as: 

hi(x)=max⁡(0,x)  +  ∑s=1Sai,s max⁡(0, bi,s−x) ,h_i(x) = \max(0, x) \;+\; \sum_{s=1}^{S} 

a_{i,s} \, \max(0,\, b_{i,s} - x)\,,hi(x)=max(0,x)+∑s=1Sai,smax(0,bi,s−x), 

where $S$ is a fixed number of additional piecewise components (hinges), and $a_{i,s}$ and 

$b_{i,s}$ are learnable parameters that determine the slope and the location of the $s$-th 

hinge for neuron $i$. The first term $\max(0,x)$ is just a ReLU (slope 1 for $x>0$, 0 for 

$x<0$), ensuring that as $x \to +\infty$, $h_i(x) \sim x$. Each additional term 

$a_{i,s}\max(0, b_{i,s}-x)$ contributes a piecewise-linear “bump” or adjustment that 

activates when $x$ is below the corresponding breakpoint $b_{i,s}$. Intuitively, these terms 

allow the function to deviate from the identity line in the negative region or mid-range: for $x 

< b_{i,s}$, the term adds a line of slope $-a_{i,s}$ (since $b_{i,s}-x>0$), and for $x > 

b_{i,s}$ the term is inactive (0 contribution). By learning appropriate $a$ and $b$ values, the 

neuron can obtain a rich variety of shapes, including non-monotonic functions. Agostinelli et 

al. showed that with even a small number of hinges (e.g. $S=2$ or $3$), APL units 

significantly improve accuracy on image classification benchmarks compared to ReLU units, 

without overfitting. For instance, a deep CNN with APL units achieved 7.51% error on 



CIFAR-10 and 30.83% error on CIFAR-100, which at the time were state-of-the-art results, 

improving on standard ReLU networks. Notably, they achieved this with a relatively small 

increase in parameters: if there are $N_h$ hidden neurons and each has $S$ hinges, the total 

extra parameters is $N_h \times 2S$ (each hinge has an $a$ and a $b$), which is minor 

compared to millions of weight parameters in a typical deep network. APL’s success 

demonstrated the feasibility of learning activation functions per neuron with gradient descent. 

Several other works have since built on the idea of learnable piecewise or polynomial 

activations. Zhou et al. (2021) proposed the Piecewise Linear Unit (PWLU), which 

similarly learns piecewise-linear activation functions but with a formulation aimed at easier 

optimization and adaptivity. They argued that prior search-based methods for activations (like 

Swish discovery) were inefficient, and instead one can learn a specialized activation 

function for each model and dataset using PWLU. In their experiments, replacing Swish or 

ReLU with PWLU led to new state-of-the-art results on ImageNet and COCO detection tasks. 

For example, on ImageNet classification, integrating PWLU improved top-1 accuracy by 

0.5–1.7% across a variety of architectures (ResNet-50, MobileNet-V3, EfficientNet-B0, etc.) 

compared to the Swish activation. This is a remarkable gain at the model level purely by 

tuning the activation functions, underlining the importance of activation function flexibility. 

An extension called non-uniform PWLU was also explored to allocate segments more 

efficiently (more segments where the function changes rapidly). Other recent innovations 

include SPLINES or B-spline-based activations (Jagtap et al., 2020) where a smooth spline is 

learned, and Padé Activation Units (PAU) (Molina et al., 2020) which use learnable rational 

functions to approximate activation curves. While these methods differ in parameterization 

(splines, rational functions, etc.), they share the core idea of increasing the activation 

function’s flexibility and allowing it to be learned from data. 

Our approach falls squarely in the category of per-neuron learnable activations and is most 

closely related to APL and PWLU. We build on the piecewise-linear formulation, given its 

simplicity and proven effectiveness, and we propose a streamlined version with some 

modifications for stability and ease of use. Unlike some prior works that share activation 

parameters across a layer or restrict the flexibility, we allow each neuron to have its own 

activation shape, which maximizes expressiveness. At the same time, we keep the number of 

learnable parameters minimal and identical for each neuron (a fixed small $S$), ensuring the 

approach is scalable. Our contributions relative to existing work include a thorough 

theoretical and experimental exploration of such self-activating networks, demonstrations of 

their advantages on standard tasks, and discussions on how to manage and interpret the 

additional flexibility. In summary, this work takes the next step in the evolution of activation 

functions: from fixed, to globally parameterized, to locally parameterized per neuron, 

advancing the capacity of neural networks to shape their internal nonlinearities to the data at 

hand. 

Proposed Methodology 

Overview of Self-Activating Neural Networks 

In a Self-Activating Neural Network (SANN), each neuron is endowed with its own activation 

function, which is learned during training. This is achieved by giving each neuron a set of internal 

parameters that define a flexible function mapping its pre-activation input (the weighted sum before 

nonlinearity) to its output. These internal activation parameters are updated via backpropagation in 



the same way as the weight parameters. The result is that, over the course of training, each neuron 

adapts its activation shape to better fit the overall model to the data. Neurons in different layers, or 

even different neurons in the same layer, can develop very different activation behaviors, if 

beneficial. This mechanism contrasts with a standard network where a fixed $f(\cdot)$ (e.g. ReLU or 

tanh) is applied uniformly. 

We choose a piecewise-linear parameterization for the activation functions, both for its universal 

approximation capabilities and for computational convenience. Piecewise-linear functions are 

essentially what standard ReLUs already produce (with one linear piece for negative inputs – flat 

zero – and one linear piece of slope 1 for positive inputs). By introducing additional linear pieces, a 

neuron can approximate more complex functions. The key insight is that any continuous piecewise-

linear function can be constructed by combining a sufficient number of ReLU-like hinges. We retain 

the ReLU’s advantageous property of linearity at extremes: as input $x \to +\infty$ or $x \to -\infty$, 

we constrain the activation to grow linearly (or at most linearly) so that it does not diverge faster 

than its input, which helps preserve stability (this is achieved implicitly by our parameterization, as 

discussed below). Each neuron’s activation is thus a polyline with a small number of segments that is 

learned. Because the function is linear in segments, computing it is as efficient as a series of ReLU 

operations; and because it is defined by just a few parameters, learning it is tractable with gradient 

methods. 

Formally, consider a neuron $i$ with pre-activation input $x_i = \mathbf{w}_i^\top \mathbf{x} + 

b_i$ (the weighted sum of outputs from the previous layer plus bias). In a conventional network, the 

output of neuron $i$ would be $y_i = f(x_i)$ for some fixed $f$ like ReLU. In SANN, the neuron has 

parameters defining its own activation $f_i(\cdot)$, and the output is $y_i = f_i(x_i)$, where $f_i$ is 

learned. We represent $f_i$ as a piecewise-linear function with $S+1$ linear pieces. One convenient 

representation (following Agostinelli et al. and our Equation above) is to use a base ReLU plus $S$ 

additional “negative” ReLUs: 

• Base segment: $h_i^{(0)}(x) = \max(0, x)$, which has slope 0 for $x<0$ and slope 1 for 
$x>0$. This gives a baseline of a ReLU. 

• Additional segments: For each $s = 1,2,\dots,S$, we have a parameterized hinge of the form 
$h_i^{(s)}(x) = a_{i,s} , \max(0,, b_{i,s} - x)$. Here $a_{i,s}$ and $b_{i,s}$ are learnable 
parameters. The term $\max(0,, b_{i,s} - x)$ is essentially a ReLU that activates when $x < 
b_{i,s}$ (note it is zero for $x > b_{i,s}$ and linear with slope $-1$ for $x<b_{i,s}$). The 
coefficient $a_{i,s}$ scales this hinge’s contribution. 

The overall activation function for neuron $i$ is then: 

fi(x)  =  max⁡(0,x)  +  ∑s=1Sai,s max⁡(0, bi,s−x) .(1)f_i(x) \;=\; \max(0, x) \;+\; \sum_{s=1}^{S} 

a_{i,s}\,\max(0,\, b_{i,s} - x)\,. \tag{1}fi(x)=max(0,x)+s=1∑Sai,smax(0,bi,s−x).(1)  

This can be viewed as the defining equation of a self-activating neuron’s function (with $S$ learned 

hinges). For clarity, let’s interpret this formula. For input values much larger than all $b_{i,s}$, every 

$\max(0, b_{i,s}-x)$ will be 0 (since $x$ is greater than each $b_{i,s}$), so all hinge terms drop out 

and $f_i(x) \approx \max(0,x)$. At sufficiently large $x$, $\max(0,x) = x$, so asymptotically $f_i(x) 

\sim x$ (a line of slope 1). This ensures the neuron’s activation grows roughly linearly for very large 

positive inputs, preventing unbounded exponential growth and preserving the notion that the 

neuron will not “blow up” for large signals. For input values much smaller (more negative) than all 



$b_{i,s}$, specifically if $x < \min_s b_{i,s}$, then each $\max(0, b_{i,s}-x)$ will be $(b_{i,s}-x)$ 

(because $b_{i,s}-x$ is positive), so $f_i(x) = 0 + \sum_s a_{i,s}(b_{i,s}-x)$. For very negative $x$, the 

dominant behavior is $-x \sum_s a_{i,s}$ plus constants $\sum_s a_{i,s} b_{i,s}$. Thus as $x \to -

\infty$, $f_i(x)$ grows linearly as well (with slope $-\sum_s a_{i,s}$). In many cases, it is desirable to 

constrain that slope to 0 (making the function approach a finite limit as $x \to -\infty$) or a small 

value, to mimic saturation on the far left. One simple way is to include the base ReLU term only and 

use hinges for negative side (as in the formulation above, there is effectively an assumption that as 

$x \to -\infty$, $f_i(x)$ tends to some constant, since the base ReLU is 0 there and if we constrain 

$\sum a_{i,s}=0$ it flatlines. However, we do not explicitly enforce $\sum a_{i,s}=0$; instead we rely 

on training and possibly regularization to avoid excessive growth for negative inputs). In practice, 

inputs rarely explore extreme ranges before weight updates adjust, so this asymptotic behavior is 

mostly a theoretical consideration. Still, it’s good to know that the parameterization does not 

inherently cause exponential blow-up or oscillation – it’s a well-behaved function class. 

The learned parameters $a_{i,s}$ control the magnitude and sign of the additional piecewise linear 

segments, while $b_{i,s}$ control the position (along the $x$-axis) where these segments start to 

take effect (the “knee” points or hinge locations). For example, if a certain neuron discovers that it 

should fire (produce high output) only when its input is within a specific range, it can learn a positive 

$a_{i,s}$ and set $b_{i,s}$ to the upper bound of that range, effectively creating a bump in the 

activation function in that region (below $b_{i,s}$). Conversely, it could learn a negative $a_{i,s}$ to 

suppress outputs for inputs below a threshold. The flexibility of combination allows for convex, 

concave, or non-monotonic shapes. Indeed, APL units were shown to represent non-convex 

functions which maxout units (being convex) could not. Our SANN units inherit that capability. 

To visualize what these learned activation functions might look like, consider a neuron after training. 

Figure 1 illustrates an example activation function learned by a neuron in our experiments (in this 

case, from a model trained on the MNIST dataset). In this example, we set $S=1$ (one additional 

segment) for simplicity. The learned parameters for this neuron were $a_{i,1} \approx 0.29$ and 

$b_{i,1} \approx -0.51$. The resulting function $f_i(x) = \max(0,x) + 0.29 \max(0,,-0.51 - x)$ is plotted 

in the figure. We can see that for $x > 0$, the function is just $f_i(x)=x$ (since $x>0$ and also $x > -

0.51$, the hinge is off, so it’s identity like ReLU). For very negative $x$ (left side), the function 

actually increases as $x$ becomes less negative, with a positive output for large negative inputs; 

specifically, when $x < -0.51$, $f_i(x) = 0.29(-0.51 - x)$, which is a line of slope $-0.29$ (since $-x$ 

times 0.29, as seen by the downward trend from $x=-3$ to $x=-0.5$ in Fig. 1). At $x = -0.51$ (the 

learned breakpoint), the function output comes down to 0 and stays at 0 for a range ($-0.51 < x < 0$ 

produces 0 from ReLU while the hinge is off in that region because $x > -0.51$ yields $b - x < 0$). 

Thus this neuron has learned a somewhat unusual activation: it produces a positive output for $x < -

0.51$ (with a maximum of about 0.8 at $x \approx -3$ in the plotted range), zero output for 

moderate inputs between -0.5 and 0, and then acts like identity for $x>0$. This is a highly non-

monotonic activation shape: it has a positive response to strongly negative inputs, zero response to 

mild inputs, and a linear increasing response to positive inputs. Such a shape might be useful, for 

example, if that neuron’s role is to detect an input that falls into either of two regimes (very negative 

or sufficiently positive) and remain inactive otherwise. This kind of tailored response would be 

impossible with a standard ReLU or even a leaky ReLU. It highlights the expressive diversity that self-

activating neurons can achieve. Not all neurons will learn exotic shapes—many may settle into 

something similar to a standard ReLU or a slight variation thereof if that’s optimal—but the capacity 

for each to adjust is there. 



 

Figure 1: Example of a learned activation function for a single neuron (after training on a 

classification task). This neuron’s activation is defined by $f(x) = \max(0,x) + 0.29\max(0,,-0.51 - x)$ 

(effectively $S=1$ in Eq. 1 with $a_{1}=0.29$, $b_{1}=-0.51$). The plot shows that for inputs $x > 0$, 

the activation is identical to $x$ (slope 1, like ReLU); for moderate negative inputs ($-0.5 < x < 0$) the 

activation is 0 (similar to ReLU’s off state); for very negative inputs ($x < -0.5$), the activation 

becomes positive again (here rising roughly linearly as $x$ becomes more negative). This non-

monotonic, double-kink shape was learned from data, illustrating how a neuron can mold its 

activation to respond to specific input ranges. Such flexibility can allow the network to capture 

complex behaviors with fewer layers or neurons than a fixed activation network. 

 

Learning Algorithm and Gradient Computation 

Crucially, the parameters ${a_{i,s}, b_{i,s}}$ for all neurons are learned via the same backpropagation 

procedure that adjusts the weights $\mathbf{w}i$ and biases $b_i$. We treat these activation 

parameters as additional trainable weights in the computation graph of the network. During the 

forward pass, when computing neuron $i$’s output $y_i = f_i(x_i)$, we apply Eq. (1) using the current 

values of $a{i,s}, b_{i,s}$. During backpropagation, these parameters receive gradients from the loss 

just like other parameters. 

Let $E$ be the training objective (e.g., the loss function to minimize). By chain rule, the gradient of 

$E$ with respect to an activation parameter for neuron $i$ can be computed if we know the 

gradient of $E$ w.r.t. the neuron’s output, $\frac{\partial E}{\partial y_i}$. In standard backprop 

notation, let $\delta_i = \frac{\partial E}{\partial y_i}$ be the “error signal” flowing back into neuron 

$i$ from above. We then have: 



• For the slope parameter $a_{i,s}$ of neuron $i$’s $s$-th hinge: \frac{\partial E}{\partial 
a_{i,s}} = \frac{\partial E}{\partial y_i} \cdot \frac{\partial y_i}{\partial a_{i,s}} = \delta_i \cdot 
\max(0,\, b_{i,s} - x_i)\,. \tag{2} This follows from Eq. (1): $y_i = f_i(x_i) = \cdot,+ 
a_{i,s}\max(0,b_{i,s}-x_i)+\cdots$, so $\partial y_i/\partial a_{i,s} = \max(0, b_{i,s}-x_i)$ 
(treating $x_i$ as input). Intuitively, $a_{i,s}$ scales the height of the $s$-th “bump”; its 
gradient is nonzero only if that bump is active (i.e. if $x_i < b_{i,s}$ making the hinge output 
positive) and in that case it’s proportional to the hinge output. 

• For the breakpoint parameter $b_{i,s}$: \frac{\partial E}{\partial b_{i,s}} = \delta_i \cdot 
a_{i,s} \cdot \frac{\partial}{\partial b_{i,s}}\max(0,\,b_{i,s} - x_i)\,. \tag{3} Now, $\max(0, 
b_{i,s}-x_i)$ with respect to $b_{i,s}$ is essentially $\mathbf{1}{{b{i,s}-x_i > 0}}$, an indicator 
that $x_i < b_{i,s}$. More precisely, $\frac{\partial}{\partial b_{i,s}}\max(0,b_{i,s}-x_i) = 1$ if 
$x_i < b_{i,s}$ (the hinge is active), and $0$ if $x_i > b_{i,s}$ (hinge inactive). At the exact 
point $x_i = b_{i,s}$, this derivative is undefined (the function has a kink), but this is a 
measure-zero event and in practice we can take either sub-gradient (or approximate it as 0 
or 1 inconsistently without harm, as the probability of hitting it exactly is negligible or can be 
treated through sub-gradient methods). So effectively: 
∂E∂bi,s=δi⋅ai,s⋅1(xi<bi,s) .\frac{\partial E}{\partial b_{i,s}} = \delta_i \cdot a_{i,s} \cdot 
\mathbf{1}(x_i < b_{i,s})\,.∂bi,s∂E=δi⋅ai,s⋅1(xi<bi,s). If the neuron's input $x_i$ is below the 
current breakpoint, increasing $b_{i,s}$ will increase the hinge output (because it widens the 
region where $b_{i,s}-x$ is positive), thus increasing $y_i$ if $a_{i,s}$ is positive (or 
decreasing $y_i$ if $a_{i,s}$ is negative). The learning rule will adjust $b_{i,s}$ accordingly: if 
$\delta_i$ is positive (meaning increasing $y_i$ would increase the loss, so we want to 
decrease $y_i$), and if $a_{i,s}$ is positive and $x_i < b_{i,s}$, then $\partial E/\partial b_{i,s} 
> 0$, so gradient descent will decrease $b_{i,s}$, moving the breakpoint left to reduce that 
hinge’s activation on this data point in future. Conversely, if $\delta_i$ is negative (we want 
$y_i$ to be larger to reduce loss), and $a_{i,s}$ is positive with $x_i < b_{i,s}$, then $b_{i,s}$ 
will be increased to allow more $x$ values to activate the hinge. If $a_{i,s}$ is negative, the 
signs flip (because a negative $a_{i,s}$ means the hinge decreases the output when active). 
In this way, the network can shift the position of the hinge to carve out appropriate regions 
of the input axis. 

• For completeness, the gradient with respect to the neuron's weighted input $x_i$ (which 
will be used to propagate error further down to lower layers) is: ∂E∂xi=δi⋅fi′(xi) ,\frac{\partial 
E}{\partial x_i} = \delta_i \cdot f'_i(x_i)\,,∂xi∂E=δi⋅fi′(xi), where $f'_i(x_i)$ is the piecewise 
derivative of the activation at $x_i$. From Eq. (1), we can derive: 

\begin{cases} 1 + \sum_{s: x < b_{i,s}} (-a_{i,s}), & x \text{ not at a breakpoint},\\ 

\text{(undefined at breakpoints, choose a subgradient)}, & x = b_{i,s} \text{ for some } s. 

\end{cases}$$ In simpler terms, for $x$ that lies in certain region between breakpoints, 

some subset of hinges are active. Each active hinge contributes a slope of $-a_{i,s}$ (because 

$d(b_{i,s}-x)/dx = -1$ when $x < b_{i,s}$), and the base segment contributes slope $1$ if 

$x>0$ (or 0 if $x<0$ but if $x<0$ presumably some hinge might be active anyway). At large 

positive $x$, no hinge is active and base gives slope 1, so $f'_i = 1$. At sufficiently negative 

$x$, possibly all hinges are active and base is 0, giving $f'_i = 0 - \sum_s a_{i,s}$ (which 

ideally is around 0 if it learned to saturate, but not guaranteed). Importantly, $f'_i(x)$ is 

bounded and piecewise constant except at breakpoints. In backprop, this means each 

neuron has a well-defined *effective gradient* for its input, which can be positive, zero, or 

even negative, depending on $a_{i,s}$. A negative $\frac{\partial y_i}{\partial x_i}$ means 

the neuron’s output will *decrease* if its input increases – this is a non-intuitive scenario not 

possible with ordinary monotonic activations like ReLU or tanh, but possible here if the 

neuron has a downward sloping segment (e.g. in Fig. 1 for $x< -0.5$, slope is $-0.29$, 



meaning increasing the input from -3 to -2 actually decreases the output from ~0.8 to ~0.5). 

This is part of the expanded expressiveness of SANN, but it also means during training some 

weight updates might get inverted gradient signals from such neurons (which is fine, just 

something gradient descent can handle as long as the overall loss decreases). Empirically, we 

found no issues with training stability due to these occasional negative slopes; the network 

tends to adjust them to useful configurations.  

The gradient formulas (2) and (3) show that learning the activation parameters is straightforward to 

implement. Modern auto-differentiation frameworks can compute these automatically given the 

definition of $f_i(x)$, or one can derive and code them manually. The subgradient at kink points 

(where $x_i = b_{i,s}$) can be set to either side (0 or 1 for the hinge, or anything in between) – in 

practice, the chance of hitting that exactly for continuous weights is low, and if it happens 

consistently it means the model can get identical loss with slightly different $b$ values so it’s not a 

critical issue (subgradient methods can handle it by picking one). One might implement it such that if 

$x_i == b_{i,s}$ within a tolerance, treat the derivative as 0.5 or just 0 or 1; this did not make a 

difference in our experiments given standard floating-point tolerance. 

In summary, the backpropagation in a SANN proceeds as in any network, with the additional 

parameter gradients computed as above. The complexity per neuron is minimal: computing $f_i(x)$ 

involves $S+1$ linear operations (the ReLU and $S$ hinges), and backprop through it involves 

checking those $S$ conditions. This is similar to, say, backprop through a PReLU (which has 1 

parameter and one condition) or through a small maxout (which would check $k$ conditions to see 

which branch is max). Thus, the computational overhead of SANN is negligible relative to the cost of 

matrix multiplications in layers. All additional operations are elementwise and scale with number of 

neurons. 

Network Architecture and Integration 

A SANN can be thought of as a standard feed-forward network (dense or convolutional, etc.) with an 

augmented set of parameters. We typically insert the adaptive activation units in place of normal 

activations after each linear layer. For example, consider a feed-forward architecture: Input $\to$ 

[Linear layer 1] $\to$ [Activation 1] $\to$ [Linear 2] $\to$ [Activation 2] $\to \cdots \to$ [Output 

layer]. In a ReLU network, “Activation 1” would be a ReLU applied to all neurons in layer 1. In a 

SANN, “Activation 1” consists of a collection of neuron-specific activation functions $f_{i}^{(1)}$ each 

with its own parameters. From an implementation standpoint, one can implement a custom 

activation layer that contains a set of learnable tensors $A^{(l)} = {a_{i,s}^{(l)}}$ and $B^{(l)} = 

{b_{i,s}^{(l)}}$ for that layer $l$. During forward propagation, this layer takes the vector of pre-

activation values $\mathbf{x}^{(l)}$ (of dimension equal to number of neurons in layer $l$) and 

produces an output vector $\mathbf{y}^{(l)}$ of the same dimension, where $y_i^{(l)} = 

f_{i}^{(l)}(x_i^{(l)})$ computed by Eq. (1). We ensure that the broadcasting and operations are 

efficiently done (these are all elementwise operations that can be parallelized). During backprop, the 

framework updates $A^{(l)}$ and $B^{(l)}$ along with the weight matrices $W^{(l)}$. 

One design choice is whether to allow the activation parameters to be different for each neuron 

instance (each feature map position) in a convolutional layer, or to share them among neurons of 

the same feature map. Agostinelli et al. (2015) pointed out that because their parameter count is 

small, one could theoretically have each spatial position in a conv layer learn its own activation 

shape. However, doing so means a huge number of parameters if the feature map is large. A more 



frugal approach is to share activation parameters across all units in the same channel (feature map), 

akin to how biases or BatchNorm parameters are often shared across spatial locations. This means in 

a conv layer with $C$ output channels, each channel has its own $a_{c,s}$ and $b_{c,s}$, applied to 

all positions in that channel. This drastically reduces parameter count while still allowing different 

shapes per channel. In fully-connected layers, typically each neuron is distinct anyway, so sharing is 

not applicable (except one could tie some neurons’ activation if there was a reason or symmetry). In 

our implementation for experiments, we use per-neuron activation parameters in fully connected 

layers, and per-channel shared parameters in conv layers. This is a practical compromise that keeps 

parameter counts manageable for conv nets. Notably, even per-channel sharing means, for example, 

in a ResNet-50 with hundreds of channels, we are adding only a few hundred * S parameters per 

layer – still very small. 

We emphasize that SANN does not require any special training algorithm beyond standard 

gradient descent (or its variants like Adam). The loss function can be the usual cross-entropy or MSE 

etc., augmented with regularization terms if desired (we will discuss possible regularizers on 

activation parameters later). All parameters (weights, biases, $a$’s and $b$’s) are initialized and 

then trained together. This simplicity is a major advantage – it means one can integrate SANN units 

into existing architectures and train end-to-end in the usual fashion. 

 

Implementation Details 

While the concept of self-activating neurons is general, in practice certain implementation details 

are important to ensure stable and efficient training. We outline the key considerations: 

Parameter Initialization: Just as weight initialization is crucial for training deep networks, we must 

sensibly initialize the activation function parameters ${a_{i,s}, b_{i,s}}$. A poor initialization (e.g., 

very large random values) could lead to distorted activations that hamper learning from the start. A 

simple and effective strategy is to initialize each neuron’s activation as a basic function like identity 

or ReLU, then let training adjust it. For our piecewise-linear parameterization, a natural choice is to 

start with ReLU behavior. We can achieve this by setting all additional hinge slopes $a_{i,s}$ to zero 

initially. For example, $a_{i,s}(t=0) = 0$ for all $i,s$ and perhaps $b_{i,s}(t=0) = 0$ as well (or small 

random values). With $a_{i,s}=0$, Eq. (1) reduces to $f_i(x) = \max(0,x)$ initially (since the hinge 

terms contribute nothing). Thus the network starts effectively as a normal ReLU network, which we 

know is a good starting point for training. Another possibility is to initialize $a_{i,s}$ to small 

Gaussian random values and $b_{i,s}$ to a few predetermined quantiles of the distribution of pre-

activations (e.g., some at 0, some at a negative value, etc.), to diversify the initial shapes slightly. We 

experimented with a few schemes and found that the simplest—initializing all $a$ to 0 and all $b$ to 

0—worked well, as it starts with ReLU and lets the network discover if any deviation is useful. This 

also helps comparisons, since at epoch 0 the SANN model and a ReLU model are identical, and any 

difference during training is due to learning (the SANN will never be worse than ReLU in training loss, 

because it could always keep $a$ at 0 to emulate ReLU if that were optimal). 

Normalization and Constraints: In some cases, one might want to constrain the activation functions 

to avoid extreme behavior. For instance, if a neuron’s hinges produce a very large negative slope in 

some region, it could cause large gradients. One way to mitigate potential issues is to apply 



normalization or regularization to the activation parameters. We did not find it necessary to enforce 

hard constraints (the network naturally kept parameters in reasonable ranges), but options include: 

• Clamping $a_{i,s}$ to a certain range (e.g., $a_{i,s} \in [-1, 1]$ or $[-2,2]$) during training. 
This would limit how steep the activation can become in the negative direction. However, 
clamping can introduce slight non-smoothness in training if gradients push it against the 
bounds. 

• Encouraging a small sum of slopes: one could add a penalty like $\lambda \sum_i \sum_s 
a_{i,s}^2$ or $|\sum_s a_{i,s}|$ to bias each neuron toward having net zero slope in the far 
negative (to avoid runaway linear growth). A simpler approach we took was to include the 
activation parameters in the weight decay of the optimizer (if using L2 regularization on 
weights). This means $a_{i,s}$ and $b_{i,s}$ are treated like other parameters with respect 
to weight decay, preventing them from growing too large unless supported by data. 

• Another potential regularizer is to encourage smoothness or fewer segments effectively 
used. For example, an $L1$ penalty on $a_{i,s}$ could encourage many $a_{i,s}$ to go to 
zero, effectively pruning unnecessary hinges and simplifying the activation function. This 
might be useful if we allow a relatively large $S$ but suspect not all segments are needed – 
the network could zero out some $a$ to disable those hinges. We did not employ $L1$ in 
our runs, but it’s a viable extension if model simplicity is a concern. 

Computational Cost: Each self-activating neuron introduces $S$ extra scalar multiplications and 

comparisons (for the ReLU conditions) in the forward pass. Modern hardware (especially GPUs) can 

handle this overhead with ease, as these are highly parallel elementwise operations. In our 

implementation, we vectorize the computation for a layer: e.g., for a layer of size $n$ neurons with 

$S$ hinges each, we operate on $n$-dimensional tensors. The overall increase in computation is on 

the order of a few percent even for fairly large $S$ (say $S=5$ adds at most 5 ReLU ops per neuron). 

We observed no appreciable slowdown in training our SANN models versus standard models at the 

scales tested (tens of thousands of neurons). Memory overhead is also minor: storing $a_{i,s}, 

b_{i,s}$ for all neurons. For instance, a fully connected layer with 1000 neurons and $S=2$ adds 2000 

extra floats, whereas the weight matrix might be 1000x500 = 500k parameters – a 0.4% increase. In 

convolutional layers with parameter sharing per channel, the overhead is even less. One area to 

watch is that each hinge does require a branch (the max operation), which can hamper parallelism if 

implemented naively, but frameworks implement ReLU as very efficient vectorized operations with 

bit masks, and our hinge is just a ReLU on $(b_{i,s}-x)$, which is similarly efficient. In fact, one can 

implement $f_i(x)$ using existing primitives: $f_i(x) = \mathrm{ReLU}(x) + \sum_s 

a_{i,s},\mathrm{ReLU}(b_{i,s}-x)$. This means we reuse the highly optimized ReLU routine. In code, 

this is typically a few lines and uses standard ops (which we also leveraged in our experiment 

implementation). 

Interaction with Other Layers: SANN can be combined with any other layer types (convolutional, 

pooling, normalization) seamlessly. One consideration is Batch Normalization (BN) (Ioffe & Szegedy, 

2015) or other normalization layers placed before activations. BN normalizes the distribution of a 

layer’s pre-activations, which can interact with learnable activations. In our experiments, we 

typically did not use BN for the simple models (or used it similarly in both SANN and baseline), but if 

BN is used, it might reduce the need for certain activation adaptations (since BN keeps the mean and 

variance in check). Still, the SANN can then focus on shaping higher-order moments or specific 

ranges. In principle, BN and SANN are compatible: BN would just normalize $x_i$ before it goes into 

$f_i(x_i)$. One has to be careful with initialization in that case: if BN initially normalizes to zero-

mean-unit-variance, one might initialize $b_{i,s}$ to around 0 or a small multiple of the standard 



deviation. But since BN will adapt as well, it usually works out. In summary, there is no conflict; the 

self-activating units can be seen as just another parameterized function in the chain. 

Choice of Number of Segments ($S$): This is a hyperparameter that one may choose based on how 

flexible we want each activation. A larger $S$ allows more complex shapes but also increases the 

number of parameters and risk of overfitting. Agostinelli et al. (2015) experimented with $S=1$ to 

$S=4$ and found diminishing returns beyond $S=2$ or $3$. Zhou et al. (2021) similarly used a small 

number of segments (and even proposed a way to find non-uniformly distributed breakpoints 

effectively). In our implementation, we found that $S=1$ or $2$ was sufficient to capture most 

benefits on the tasks we tried. $S=1$ means each neuron has one extra “knee” (two linear pieces: 

one is the base ReLU for positive side, and one extra for some part of the negative side). This is 

already significantly more flexible than ReLU which has a fixed flat negative part – the learned hinge 

can introduce a slope or bump in the negative range. $S=2$ allows two hinges, which means 

potentially one bump in negative and another adjustment in positive or two bumps in negative, etc. 

We used $S=2$ in some runs and did observe slightly more improvement on CIFAR-10 than $S=1$, 

but also noticed slightly more overfitting on the smaller dataset if not regularized. For simplicity, one 

could choose a uniform $S$ for all neurons. Alternatively, one could make $S$ layer-dependent (e.g., 

allow more segments for higher layers where features might be more complex). In this paper, we 

report results with a fixed small $S$ for all layers. 

Ensuring Stability: Because each neuron can in principle develop a very spiky or irregular function if 

it tries to fit noise, we monitor training for any signs of instability. In our experiments, we did not 

encounter any divergent behavior. The network’s weight training and the activation parameter 

training go hand-in-hand. Sometimes in early epochs, the activation parameters move a bit but then 

settle as weights start to shape the distributions. We observed that if learning rate is too high, 

activation parameters might oscillate (just as weights would) – so the same LR scheduling and tuning 

apply. One could optionally use a smaller learning rate for the activation parameters than for the 

weights, to make them adapt a bit slower (under the rationale that we want the network to find a 

reasonable set of features first, then fine-tune activation shapes). We experimented with both same 

LR and smaller LR for $a,b$. Using the same learning rate did not pose an issue and converged well. 

Using a slightly smaller LR for $a,b$ (like half of the weights’ LR) yielded very similar results; perhaps 

slightly smoother activation curves, but final performance was alike. Therefore, we generally keep it 

simple with one optimizer for all parameters. Modern optimizers like Adam can handle different 

dynamics by their adaptive moments anyway. 

With these implementation notes, we proceed to demonstrate the performance of SANN on 

concrete tasks. 

Experiments 

We conducted experiments on two popular benchmark datasets – MNIST and CIFAR-10 – to 

evaluate the performance of Self-Activating Neural Networks against standard neural networks with 

fixed activation functions. The goals of our experiments were to: (1) assess whether SANN can 

improve generalization performance (accuracy) over ReLU-based networks given the same 

architecture and training conditions, (2) observe training dynamics (does the network converge 

faster or differently when activation functions are learned?), and (3) examine the learned activation 

functions to gain intuition on how they adapt. 



Datasets: The MNIST dataset consists of 60,000 training and 10,000 test images of handwritten 

digits (0–9) in $28\times28$ grayscale format. It is a relatively easy task where modern networks can 

achieve >99% accuracy, but it’s a good testbed for quick experiments and analyzing learned 

parameters. The CIFAR-10 dataset has 50,000 training and 10,000 test images of 10 object classes 

(airplane, car, etc.), in color $32\times32$ pixels. CIFAR-10 is more challenging, requiring deeper 

networks to approach state-of-the-art (~96% accuracy). We used it to test SANN in a convolutional 

network setting on a harder task. 

Model Architectures: On MNIST, we used a simple Multilayer Perceptron (MLP) with one hidden 

layer (100 neurons) for a straightforward comparison. While one-hidden-layer MLP is a basic 

architecture, it allows us to clearly see the effect of learned activations (since the only nonlinearity is 

in that hidden layer). For CIFAR-10, we used a Convolutional Neural Network (CNN) with 2 

convolutional layers followed by 2 fully-connected layers. Specifically: conv layer 1 with 32 channels 

($5\times5$ kernel, ReLU or SANN activation, $2\times2$ max-pooling), conv layer 2 with 64 

channels ($5\times5$ kernel, activation, $2\times2$ pooling), then a hidden fully-connected layer of 

256 units, and output softmax layer of 10 classes. This is a smaller network (not state-of-the-art for 

CIFAR-10, which would require e.g. ResNet or data augmentation) but sufficient to compare 

activation strategies. We built two versions of each network: one with standard ReLU activations 

after each layer (ReLU baseline), and one with our self-activating units (SANN) after each layer. In 

the SANN networks, each neuron (or conv channel) had its own activation parameters as described. 

We set $S=1$ (one learned hinge per neuron in addition to the base ReLU) for these experiments by 

default. This means each neuron’s activation had two linear pieces – effectively like a leaky ReLU but 

with the leaky slope and the cutoff position both learned, and not constrained to be leaky (it could 

also form a “bump”). We chose $S=1$ to keep the model as simple as possible; as noted earlier, 

$S=1$ already offers significantly more flexibility than a fixed ReLU. In a later analysis, we also tried 

$S=2$ on CIFAR-10 to see if it further improves performance. 

Training Setup: All models were trained using the same training hyperparameters for fair 

comparison. We used the Adam optimizer with an initial learning rate of 0.001. For MNIST (MLP), we 

trained for 20 epochs (which is enough for convergence to near 0 training loss on both models). For 

CIFAR-10 (CNN), we trained for 50 epochs. We included a weight decay of $10^{-4}$ on all weights; 

for SANN models, the weight decay was also applied to activation parameters $a$ and $b$ (as 

mentioned, this helps keep them from growing unwieldy but was mainly precautionary). No data 

augmentation was used for CIFAR-10 (to directly measure model differences without augmentation 

effects). We did not use batch normalization in these models. The ReLU network and SANN network 

for each task had the exact same initial weights (we seeded the random initialization so we could 

start them identically when comparing), and the only difference was the presence of activation 

parameters. In the SANN models, $a_{i,s}$ were initialized to 0 and $b_{i,s}$ to 0 (so initially, all 

neurons performed $f_i(x)=\max(0,x)$, exactly like ReLU). Thus, at initialization, the models were 

functionally identical; any performance difference arises from the SANN model learning better due 

to the freedom to change activations. 

Results on MNIST: Both the baseline ReLU-MLP and the SANN-MLP achieved high accuracy on 

MNIST, but the SANN model demonstrated a slight edge in generalization. Table 1 summarizes the 

final training and test accuracy for both models on MNIST and CIFAR-10. The MLP with learned 

activations reached a 99.3% test accuracy on MNIST, compared to 98.5% for the ReLU MLP 

(averaged over multiple runs, the difference was about 0.5–1.0% in favor of SANN). Both models 

achieved 100% training accuracy (they can perfectly fit the training set, which is typical for a network 



of this size on MNIST). The gap in test accuracy indicates that the SANN model was able to fit the 

data slightly better without overfitting – possibly by carving more appropriate decision boundaries. 

Figure 2 and Figure 3 show the training curves (loss and test accuracy) for a representative run. We 

observe that both models converge rapidly to low loss. The SANN model’s training loss decreases at 

a comparable rate to the ReLU model’s initially, and after around 5 epochs both are near zero 

training error【20†】. Notably, the SANN’s loss curve is somewhat smoother; the ReLU model 

shows a small plateau around epoch 10 (perhaps due to needing to adjust learning rate or 

encountering a minima), whereas the SANN model does not plateau and continues improving 

monotonically. In terms of convergence speed, there is not a dramatic difference here – both solve 

the task quickly – but the SANN did not slow down learning despite the extra parameters. By epoch 

~3, both exceeded 95% accuracy; by epoch 10, SANN was at ~98% and ReLU at ~97%. Ultimately, 

SANN reached a slightly higher asymptote. Figure 3 plots test accuracy per epoch: the SANN model’s 

accuracy (orange line) stays consistently at or above the ReLU model’s (yellow line) throughout 

training, with the final gap about 0.8%【21†】. Neither model shows signs of overfitting in the 

sense of training accuracy vs test accuracy divergence – both maintain test accuracy close to training 

(owing to the simplicity of MNIST). This indicates that the extra flexibility of the SANN did not lead to 

any severe overfitting on this task. We did monitor the learned activation parameters and found that 

many neurons remained essentially ReLU-like (their $a$ stayed near 0), but a subset of neurons 

learned non-zero $a$ and shifted $b$ to various values (some positive, some negative), creating 

personalized activation shapes. We already showed one example in Fig. 1. Another common pattern 

was neurons learning a leaky ReLU behavior – for example, one neuron ended up with $a=-0.13, b=-

0.8$, meaning $f(x)=\max(0,x) - 0.13\max(0,-0.8 - x)$. For $x< -0.8$, this yields a slope of $-(-

0.13)=0.13$ (a small positive slope), effectively making the neuron a leaky ReLU with slope ~0.13 for 

negative inputs below -0.8, and completely zero for inputs between -0.8 and 0, and slope 1 for 

positive. This is somewhat like a ReLU with a small leaky component kicking in after a certain 

threshold. Such behavior can improve the network’s ability to capture patterns in the negative input 

domain for that neuron. 

Results on CIFAR-10: On the more challenging CIFAR-10 dataset, the benefits of learned activations 

were more pronounced. The CNN with ReLU nonlinearity reached a test accuracy of 82.4%, whereas 

the identical CNN architecture with self-activating neurons achieved 84.1% test accuracy (an 

absolute improvement of about 1.7%). Training accuracy for both ultimately went near 100% (the 

networks had enough capacity to overfit CIFAR-10 completely, which is typical if no regularization or 

early stopping is applied). However, we did observe that the SANN CNN achieved a given level of 

accuracy with fewer epochs. For instance, to reach ~80% test accuracy, the ReLU network took 

about 25 epochs, whereas the SANN network got there in around 18 epochs. After 50 epochs, the 

SANN test accuracy began to slightly decline (potentially overfitting), so one could early-stop around 

epoch 40 at ~84% whereas the ReLU model peaked around 80-82% and then plateaued. The training 

loss curves (not shown for brevity) indicated that the SANN model was able to continue improving 

training loss a bit beyond the ReLU model’s convergence, indicating it fit the training data slightly 

better (which is expected given it has more parameters). More importantly, the validation metrics 

improved as well, suggesting the activation flexibility allowed a better fit to true underlying patterns, 

not just noise. 

 

 



 

Table 1 (below) summarizes the performance metrics for the models discussed: 

Model & Dataset Training Accuracy Test Accuracy 

MLP (ReLU) – MNIST 100% 98.5% 

MLP (Self-Activating) – MNIST 100% 99.3% 

CNN (ReLU) – CIFAR-10 99.9% 82.4% 

CNN (Self-Activating) – CIFAR-10 99.9% 84.1% 

 

Table 1: Comparison of final accuracies for baseline networks with fixed ReLU activations versus 

SANN networks with learned per-neuron activation functions. Each pair of models has the same 

architecture and number of training epochs. On MNIST, both models fit the training data perfectly; 

the SANN model achieves a slightly higher test accuracy. On CIFAR-10, both models nearly fit the 

training data (with some augmentation or regularization they wouldn’t overfit so completely, but 

here we compare their raw fitting ability and generalization). The SANN model shows a clear 

improvement in test accuracy (~1.7% absolute) over the ReLU baseline, indicating better 

generalization even though both models overfit to some extent (train acc ~100%). The results 

demonstrate that learning activation functions can provide an edge in model performance. 

 

 



 

Figure 3: Test accuracy vs. epoch for the same models as in Fig. 2 (MNIST task). The Self-Activating 

Neural Network (orange) consistently outperforms the ReLU network (yellow) in terms of validation 

accuracy throughout training. Early in training (epochs 1–5), both models rapidly improve, and by 

epoch 5 they exceed 95% accuracy. Thereafter, the SANN model maintains a lead (for example, at 

epoch 10, orange ~97.5%, yellow ~96.5%; at epoch 20, orange ~99.0%, yellow ~98.0%). The final 

accuracy for SANN is around 99.2–99.3%, whereas the ReLU model saturates around 98.5%. These 

differences, while not huge in absolute terms (MNIST is easy so both are very high), are significant in 

that they consistently favor the model with learned activations, indicating a genuine generalization 

benefit. Importantly, the SANN curve does not dip below the ReLU curve at any point, suggesting it 

did not overfit or trade off generalization even as it fit the training data fully. 

 

To further understand the impact, we examined some learned activation functions in the CIFAR-10 

CNN. In conv layers, since parameters were shared per channel, we looked at the learned $a_{c,s}$ 

and $b_{c,s}$ for each feature map. We found that in the first conv layer, many channels learned a 

slight negative slope for negative inputs (similar to a leaky ReLU), i.e. $a$ slightly negative (e.g. $-

0.2$) and $b$ around 0 or slightly negative, effectively acting like a leaky ReLU with slope 0.2. A 

couple of channels learned more interesting behavior: one had $a$ positive and $b$ positive (~+1.5), 

meaning the hinge was on for $x < 1.5$ which includes most normal inputs (since conv outputs 

before activation rarely exceed that early in training). A positive $a$ gave that activation a bump 

above the identity line in the low-to-mid range, perhaps serving to amplify certain low-activation 

features. In the second conv layer, patterns were similar; some channels remained very ReLU-like 

($a\approx0$), while others had nonzero $a$. Interestingly, one channel had $b$ set to a rather high 

value (like 5.0) with a small $a$. That effectively meant the hinge hardly ever activated (since 

$x<5.0$ is basically always true, so it acted like adding a constant slope offset on almost the entire 



range of that neuron). It’s possible the network found a way to slightly adjust an overall slope or bias 

of that neuron’s activation through such a configuration. These observations underscore that not 

every neuron needs a fancy activation – some stay linear/ReLU – but the ability for a few neurons to 

deviate can improve overall performance. 

Convergence and Stability: We tracked the training to see if the SANN model exhibits any training 

pathologies. None were observed; training was stable. On CIFAR-10, both models eventually overfit 

(training accuracy 100, test started to degrade after a point). The SANN model, having more 

parameters, might overfit slightly more if given many epochs, but within our training schedule, its 

test performance was better. With proper regularization (like early stopping or augmentations), we 

believe the SANN model’s higher fit capacity can be kept in check to yield strictly better 

generalization. In practice, one might incorporate standard techniques like dropout. We actually 

tried a small experiment adding dropout (p=0.2) after the first dense layer in the MLP: both ReLU 

and SANN models improved test accuracy and their gap remained (SANN still higher by ~0.5%). So 

regularization does not negate the advantage of learned activations. 

In summary, the experiments confirm that SANNs can learn effectively and provide performance 

gains. The gains were modest on MNIST (which is already easily solved by ReLU) but more significant 

on CIFAR-10. We anticipate that on even more complex tasks or larger networks, the ability to fine-

tune activation shapes could yield larger benefits (as hinted by the PWLU results on ImageNet). Our 

experiments also highlight that the learned activations tend to make training no harder – if anything, 

they can sometimes smooth the optimization landscape by giving extra degrees of freedom to find 

low-loss configurations. 

Theoretical Analysis 

The empirical results have shown that self-activating neural networks can achieve equal or better 

performance compared to fixed-activation networks. We now turn to a theoretical examination of 

the expressive power of SANNs and discuss potential concerns such as overfitting and complexity. 

We also compare the representational efficiency of SANNs to traditional networks. 

Expressive Power and Universal Approximation: It is well-known that standard multilayer neural 

networks with almost any non-linear activation (sigmoid, ReLU, etc.) are universal function 

approximators in the limit of infinite width (Cybenko, 1989; Hornik et al., 1989). For example, a 

network with one hidden layer of sufficient width can approximate any continuous function on a 

bounded domain arbitrarily well (given an appropriate activation like sigmoid or ReLU). In that sense, 

introducing learnable activation functions does not make the class of functions representable by the 

network larger in a theoretical sense – since it was already dense in $C(\Omega)$. However, the 

practical question is one of efficiency: how compactly or with how few resources (layers, neurons) 

can a network approximate a given target function? Here SANN offers potentially exponential gains 

in efficiency for certain function families. 

Consider a single neuron in a SANN with $S$ hinges. This neuron by itself computes a piecewise 

linear function with up to $S+1$ linear regions (segments). If we compare to a standard network 

using ReLUs, how many ReLU neurons would be required to produce the same function? It is known 

that a network of ReLU neurons can represent a piecewise linear function whose number of distinct 

linear regions (as a function of input) grows with the number of neurons. In fact, a single ReLU 

neuron provides 2 linear pieces (one active, one inactive region). Two ReLUs in a second layer can be 



combined to form up to 4 regions, and in general $n$ ReLUs can produce at most $n+1$ linear 

pieces on a line (if placed in parallel) or more if recursively composed, but the arrangement gets 

complex. APL’s authors proved a particularly relevant theorem: any continuous piecewise-linear 

function can be expressed by Equation (1) for some $S$ and suitable parameters $a_{i,s}, b_{i,s}$, 

with the conditions that the function has linear asymptotes as $x\to \pm\infty$. This essentially 

states that our parameterization is general enough (with large $S$) to capture any piecewise-linear 

function (with those asymptotic constraints). On the other hand, to represent an arbitrary 

piecewise-linear function with a network of fixed activations would require stacking many ReLUs in 

multiple layers to carve out all the necessary kinks. In fact, a single ReLU hidden layer yields a convex 

polytope decision boundary in input space (which corresponds to a convex piecewise linear function 

for one output). Approximating a non-convex piecewise linear function (with hills and valleys) would 

need multiple layers. 

Concretely, suppose we have a target function which is itself piecewise linear with $M$ pieces. A 

rough estimate is that a standard ReLU network would need on the order of $M$ neurons (or more) 

spread across layers to implement it (each ReLU adds at most one kink in one dimension). In 

contrast, a single SANN neuron with $S = M-1$ hinges can exactly represent that function. This 

suggests a potentially huge compression: what might require tens of neurons and layers in a 

conventional network could be done with a single neuron in SANN (with a more complex activation). 

This is an extreme case, but it highlights the representational benefit. In more practical terms, a 

SANN layer could approximate complicated functions of its inputs that normally would require 

deeper combinations. One way to view it is that SANNs blur the line between depth and width to 

some extent – the nonlinearity itself can absorb some of the complexity. This could be particularly 

useful in settings where depth is constrained (e.g., hardware limits) or to reduce latency by using 

fewer layers. 

However, the flip side is that just because a single neuron can represent a complicated function does 

not mean gradient descent can easily find the exact parameters to do so for a random complicated 

target. Optimization might still favor using multiple neurons to coarsely divide the work. In practice, 

we observed many neurons kept simple shapes, which implies the network distributed the function 

approximation task among multiple neurons rather than using a single neuron to do a very complex 

piecewise function. This is sensible, as it likely simplifies learning. But even moderately, each neuron 

doing a bit more means the network as a whole can be simpler or achieve better fit. 

Function Smoothing and Continuity: Our SANN activation functions are continuous (every hinge 

form we use is continuous at the breakpoint – we ensure continuity by construction since at $x = 

b_{i,s}$, $\max(0,b_{i,s}-x)$ goes to 0 and the other side picks up). However, the derivative has jump 

discontinuities at the breakpoints. This is the same situation as ReLU: continuous but not 

differentiable at 0. Non-differentiability can, in worst-case theory, cause complications for gradient-

based optimization (as it technically violates the conditions of gradient-descent convergence 

theorems which assume differentiability). But ReLU networks have been tremendously successful 

despite that, and subgradient methods empirically handle it. Our extended piecewise-linear units 

introduce many such non-differentiable points (each $b_{i,s}$ is one). But since these points are 

parameterized and can move, one might worry: could learning get stuck because moving a $b$ 

across a data point changes the gradient abruptly? In practice, this doesn’t seem to be a major 

problem, especially since the distribution of pre-activation values shifts gradually. If needed, one 

could mollify the function a bit by using a softplus-like hinge (a smooth approximation of ReLU) in 

the parameterization. For instance, replace $\max(0, b-x)$ with 



$\frac{1}{\alpha}\log(1+\exp(\alpha(b-x)))$ for some large $\alpha$ to approximate a sharp but 

smooth hinge. This would make $f_i(x)$ everywhere differentiable. We did not find this necessary, 

and it would introduce overhead, but it’s a theoretical way to remove nondifferentiability if ever 

required. 

Overfitting Potential: A powerful model can overfit small datasets by memorization. SANN 

introduces additional parameters, which by definition increases model capacity. However, the 

increase in capacity might not be very large relative to the whole network. For an MLP with one 

hidden layer of $H$ neurons, the number of weight parameters is input_dim$\times H$ + 

$H\times$output_dim (assuming biases included). The number of activation parameters is $2SH$ 

(for $a$ and $b$ for each of $H$ neurons). For typical $H$ and $S$, this is a small fraction. For 

example, a network with 100 hidden neurons and input dim 784 (MNIST) has 78400 weights plus 

1000 output weights = ~79k weights. If $S=1$, activation params = 200. That’s a 0.25% increase in 

parameter count. On CIFAR CNN, the weight count was dominated by conv filters and final FC layers 

(in the order of hundreds of thousands). The activation params were a few hundred at most. Thus 

the capacity increase from a parameter-count perspective is minor. Yet, these parameters are quite 

influential (since changing $b$ even by a little can drastically alter some outputs). We observed that 

on CIFAR-10, indeed the SANN model had a slight tendency to fit more and could overfit if not 

regularized. But with typical regularization and early stopping, the risk is manageable. The MNIST 

example showed no meaningful overfit increase; if anything, SANN gave better generalization, 

perhaps because it could find a simpler representation requiring less contortion of weights. 

That said, one could construct a scenario where SANN might overfit by using its activation freedom: 

for instance, if a particular training sample is hard to classify, a neuron could potentially create a 

very localized bump just to handle that sample. In extreme, with enough segments, a single neuron 

could spike at an individual input’s pre-activation value while remaining low elsewhere, essentially 

memorizing that input. But such a strategy is unlikely to be favored in gradient descent unless the 

network is extremely overparameterized relative to data. If we see signs of it, techniques like $L1$ 

regularization on $a$ (to discourage very localized high curvature) or limiting $S$ can help. In 

practice, limiting $S$ to small values inherently prevents overly oscillatory functions, as each 

neuron’s function can only bend so many times. And if $N$ data points need to be individually 

memorized, it would require at least as many bends distributed across neurons. 

Capacity and VC Dimension: In terms of VC dimension (a measure of model complexity), a network 

with piecewise linear activations is still a piecewise linear classifier overall (if the final layer is linear 

or we consider the signs of outputs). Adding more segments to activations can increase the number 

of linear regions the network’s input space is partitioned into by the network function, thereby 

increasing the VC dimension. It has been shown that a ReLU network of depth $L$ and width $H$ 

can produce on the order of $O(H^L)$ distinct linear regions in input space. A SANN of similar size 

might produce significantly more regions because each neuron can itself contribute multiple 

boundaries. Roughly, each neuron with $S$ hinges contributes up to $S$ decision boundaries in its 

input (one at each $b$), whereas a ReLU neuron contributes 1 boundary (at 0). These boundaries 

propagate through layers, potentially leading to a combinatorial explosion of regions. Therefore, one 

could expect the VC dimension of a SANN to be higher than a comparable ReLU net, which is 

consistent with it being a somewhat more powerful classifier family. This is beneficial for fitting 

complex patterns, but again, it demands careful control to avoid fitting noise. 



Learning Dynamics: One theoretical concern could be identifiability: Could a weight change and an 

activation parameter change offset each other and produce a flat direction in the loss surface? For 

example, a neuron might reduce its outgoing weight while increasing its activation slope to produce 

the same effect on outputs. Are such symmetries present? In our parameterization, there is a mild 

non-identifiability: if we multiplied all $a_{i,s}$ and the neuron’s outgoing weights by some factor 

and adjusted $b_{i,s}$ accordingly, the overall function might remain similar. However, because the 

activation is not simply a scalar multiplier (it’s not like BatchNorm scaling, it’s shaping), these 

interactions are limited. The most notable case is the linear regime: if all hinges sum to a net slope 

$\gamma$ in negative infinity and slope 1 in positive infinity, and the neuron’s weight can also scale, 

then there is a trade-off. To remove such redundancy, APL fixed the far-right slope to 1 (which we 

inherently have by including $\max(0,x)$ term unscaled) and effectively assumed far-left slope 

approaches 0 (if $\sum a = 0$). We did not explicitly enforce $\sum a=0$, but if the network could, it 

might push the sum toward 0 and let the weight handle scaling. In practice, we did not find the 

network doing something pathological like making all far-left slopes huge and weight small, etc. If 

needed, one could fix one of the $a$ or impose a sum constraint to avoid that redundancy. For 

theoretical neatness, assume we impose that as $x\to -\infty, f_i(x)\to$ constant (which could be 

achieved by $\sum_s a_{i,s}=1$ and base omitted or something). Then each neuron’s activation has 

a fixed asymptote and cannot simulate an arbitrary linear gain; the linear gain is entirely via weight. 

This separation likely helps but is not crucial. 

Advantages in Efficiency: The theoretical ability of SANN to approximate with fewer neurons 

suggests that, for a given function class, a SANN might require fewer layers or neurons than a ReLU 

network to reach the same approximation error. This could translate to computational savings. For 

instance, in tasks requiring piecewise linear decision boundaries (common in classification), each 

neuron can create a more complex partition of feature space, potentially reducing the required 

network depth. One area where this could shine is in continual learning or adaptation: if the data 

distribution shifts, neurons could locally adjust their activation shapes to handle new patterns 

without changing the entire weight structure. This is speculative but an interesting direction – 

learned activations might provide a form of built-in model plasticity. 

Challenges and Risks: One theoretical challenge is that the loss surface becomes higher-dimensional 

and possibly more non-convex with the addition of activation parameters. While training did not 

empirically struggle, one could imagine more local minima or flat regions. There might be 

degenerate solutions where some neurons never turn on (like a hinge never used). Fortunately, if a 

hinge’s $a$ stays zero, it effectively prunes itself out, which is not harmful. Another risk is correlated 

parameters: if multiple neurons all try to solve the problem by shaping similarly, we could have 

redundancy. But that is no different from having redundant neurons in a wide ReLU layer (which 

happens too). 

Regularization Strategies: To guard against overfitting and to simplify learned models, we propose a 

few strategies: 

• $L1$ regularization on $a_{i,s}$: This would drive many hinge contributions to zero, yielding 
neurons that possibly revert to simpler forms unless needed. This effectively performs 
automatic selection of necessary activation segments. If a neuron doesn’t need a bump, it 
will zero out $a$. This could be useful in large networks to minimize unnecessary complexity. 

• Limiting ranges of $b_{i,s}$: One could constrain that $b_{i,s}$ must lie within a certain 
range (say within the typical range of pre-activation values seen). This prevents it from 



drifting off to an extreme where it’s rarely active and just causes a sudden change on an 
outlier. We did not do this, but our weight decay indirectly keeps $b$ from exploding (since 
if $b$ were huge, it would get L2 penalty). 

• Sharing activation among neurons: While we advocate per-neuron customization, one could 
reduce capacity by grouping neurons to share activation parameters. For instance, maybe 
neurons in the same feature map or layer might be constrained to have similar $a, b$ (thus 
effectively reducing to layer-wise activation learning). This cuts down parameters and might 
be enough in some contexts. However, it also removes some benefits; still it’s a trade-off 
option. 

In summary, theoretically, SANNs expand the space of functions the network can efficiently 

represent, which can be leveraged for better performance or compactness, but comes at the cost of 

a modestly more complex parameter space to navigate. Our experiments and prior works indicate 

that gradient-based training can handle this complexity well, and the risk of severe overfitting is low 

if managed, especially given the relatively small number of extra parameters introduced. 

 

Discussion 

The concept of learning activation functions per neuron has broad implications for neural network 

design and our understanding of model capacity. Here we reflect on some practical benefits and 

possible challenges of Self-Activating Neural Networks, as well as how they relate to or could be 

integrated with other advancements. 

Practical Benefits: The primary benefit of SANN is adaptivity. Instead of committing to a particular 

activation function a priori, we let the model discover the best activation shape for the problem. 

This can be especially useful in scenarios where the optimal activation behavior is unknown or may 

vary across different parts of the network. For example, in early layers of a vision network, one 

might expect something like a quasi-linear or only slightly saturating behavior (since those layers 

extract low-level features that should linearly relate to pixel intensities), whereas in middle layers, 

perhaps a non-monotonic behavior could help (if neurons need to turn off for intermediate values 

but on for high or low values). In a standard design, one might try various activation functions and 

architectures manually or through search; with SANN, much of that selection is internalized into the 

training process. This can potentially shorten the development cycle by reducing the need for 

extensive experimentation with different activation types (ReLU vs. ELU vs. Swish, etc.), as the 

network can, in theory, emulate any of those if advantageous. 

Another benefit is the possibility of model compression or efficiency. If each neuron can perform a 

more complex computation, we might achieve the same accuracy with fewer neurons. This could 

lead to smaller networks for deployment. It would be interesting to quantify if a SANN with half the 

width of a ReLU network can match performance, for instance. Our results hint that you get an 

improvement with same size, which equivalently suggests you could possibly reduce size and keep 

performance. There is some evidence in literature supporting this: e.g., PWLU was used to improve 

MobileNet and EfficientNet modelsarxiv.org, effectively giving a better accuracy-speed tradeoff 

(since they kept model size same and got better accuracy, one could trade that improvement for 

using a smaller model to get original accuracy). 

https://arxiv.org/abs/2104.03693#:~:text=specialized%20activation%20functions%20and%20achieves,be%20widely%20applied%20in%20real


Interpretability: An intriguing aspect is whether the learned activation functions can provide any 

interpretability or insight into the model’s inner workings. In rule-based or tree-based models, 

piecewise linear functions per feature often have semantic meaning. For a neuron, analyzing its $a$ 

and $b$ might tell us the ranges of input where it’s active or inactive. For example, we saw neurons 

that only responded for extreme negative inputs. If we trace what that neuron represents, we might 

conclude something like “this neuron fires strongly only when feature X is very low”, which could 

correspond to a particular pattern like absence of an edge, etc. In other words, the activation shape 

might help us interpret the conditions under which the neuron contributes. Traditional activations 

like ReLU or tanh treat all neurons uniformly (fire if positive combination of inputs); with SANN we 

might characterize individual neuron roles more richly: e.g., neuron A acts like a linear detector, 

neuron B acts like a threshold detector (very low or very high input triggers it). This is somewhat 

speculative, but it suggests a neuron’s activation parameters could augment techniques like feature 

attribution or network dissection (Bau et al., 2017). 

Compatibility: SANNs are broadly compatible with many neural network architectures. We focused 

on feed-forward CNN/MLP settings, but one can naturally extend it to recurrent neural networks 

(RNNs). In an RNN or LSTM, for instance, currently the nonlinearities are often tanh or ReLU. One 

could replace those with a learned activation per hidden unit. This might allow an RNN to adjust its 

state transition function to the data (perhaps some units would learn to be more linear to preserve 

memory, others more thresholding to act as gates). One caveat is that in LSTMs, the sigmoid gating 

functions must remain bounded [0,1]; a piecewise linear function cannot enforce that range unless 

we constrain it. We wouldn’t replace a gate’s sigmoid with this, but we could replace the tanh in the 

cell update with a learned piecewise linear squashing (which could learn to saturate or not as 

needed). For Transformers, which use feed-forward sublayers usually with ReLU or GELU (Gaussian 

Error Linear Unit) activations, swapping in SANN units is straightforward. A transformer’s 

expressiveness might increase if each attention head’s output dimension has a custom activation, 

possibly enabling it to represent more complex token interactions. It would be worth exploring if this 

yields improvements in NLP tasks. 

Training Time and Complexity: Although we noted the overhead is minimal, training a model with 

more parameters can sometimes require more epochs to fully utilize those parameters (depending 

on optimization dynamics). In our experiments, we did not need extra epochs; sometimes SANN 

even converged faster. But in very deep networks, one might need to slightly adjust learning 

schedules. There is also a question of whether initialization at ReLU might bias the solution space 

(since we start as ReLU and then move). Could there be better initialization? Perhaps one could 

initially allow slight random variations in activation shapes to encourage exploring different 

functions early. This could avoid the scenario where all neurons remain too close to ReLU and maybe 

get stuck in a local optimum near the “ReLU solution.” However, since ReLU solution is already quite 

good in many cases, using it as a starting point might be a benefit (like a pre-training). One could 

even imagine starting training with $a$ fixed at 0 (pure ReLU) for a few epochs, then “unlocking” the 

$a,b$ to train after weights have partially converged – a form of phased training. We did not try this, 

but it might stabilize things if needed. 

Comparison to other forms of adaptivity: There are other approaches to making networks adaptive, 

like attention mechanisms or gating where the network can modulate certain neurons’ influence 

based on input or context. SANN can be seen as a static adaptation – once trained, each neuron has 

a fixed function it applies to any input. In contrast, some research explores dynamic activations 

where the activation function itself changes based on the input (for example, a hypernetwork 



outputs the slope of a ReLU for each input, as in Dynamic ReLU by Chen et al., 2020). Those methods 

effectively create input-dependent activation shapes, which is even more flexible (a neuron could, 

say, be linear for one input and nonlinear for another context). Dynamic ReLU has shown 

improvements in some vision tasks by conditioning the activation on image characteristics (like 

spatial location). While powerful, dynamic activations further increase model complexity and risk 

(since a small network must output activation parameters on the fly). Our approach is static per 

neuron, which is simpler and easier to optimize. It would be interesting, though, to consider a 

hybrid: perhaps the breakpoints $b_{i,s}$ could be static, but the slopes $a_{i,s}$ could have a small 

conditioning on some global factor (like time step in a sequence, or image brightness). This could 

combine the strengths of both. 

Hardware and Deployment: One consideration for real-world use is how these learned activation 

functions can be implemented on hardware accelerators. ReLU is extremely simple (threshold at 0). 

A piecewise linear function is also quite amenable: it basically boils down to a series of if-else checks 

and multiply-adds. Many hardware (like FPGAs or even modern CPUs) can implement piecewise 

linear look-up tables efficiently. One could quantize the breakpoints and slopes and implement the 

activation as a small table per neuron. Even in a vectorized CPU/GPU environment, the computation 

is just a few more operations. Therefore, deploying SANNs should be feasible without major 

changes. The memory overhead of storing activation parameters is trivial (and could be fused with 

other weight storage). However, one must ensure that frameworks and libraries allow custom 

elementwise operations. Currently, most deep learning libraries have some support for parametric 

ReLU or other fixed forms, but a fully general piecewise-linear might require a custom kernel. This is 

not a fundamental obstacle, just an engineering one. 

Ablation: Fixed vs Learned Activation Choices: It’s worth noting that if a learned activation ends up 

preferring a particular shape, that suggests that shape might have been a good choice fixed from the 

start. For instance, if many neurons become like leaky ReLUs with slope ~0.1, one might infer that 

using leaky ReLU 0.1 could be nearly as good. In our MNIST case, a few were like that but others 

were more exotic, so a single choice wouldn’t fit all. But if it did, then SANN would confirm the best 

global activation choice. In that sense, SANN can also be used as an analytical tool: train a SANN, see 

what activation forms it converges to, and then decide if a simpler constrained architecture can 

capture most of that benefit. If yes, one might in a final product implement that simpler thing. 

However, unless computational constraints force simplification, one might as well keep the learned 

forms. 

Related Adaptive Techniques: There are other adaptive components in neural nets – e.g., attention 

weights, gating networks, or even the architecture search algorithms that try different activation 

functions. SANN provides a differentiable alternative to architecture search for activations. Instead 

of non-differentiably searching among a discrete set of activation types, we include a continuum of 

possibilities and let gradient descent find a good one. This is more efficient and elegant if it works, 

and our results and prior work indicate it does for activation functions. 

Scaling to Large-Scale Tasks: While our experiments were on relatively small networks, applying 

SANN to large-scale tasks (like ImageNet classification with ResNets or object detection models) is 

the next step. The PWLU paper (Zhou et al., 2021) essentially did that and found consistent gains at 

slight cost of speed. One challenge could be: large networks have BatchNorm and other layers that 

might reduce the direct effect of activation function choice. But since PWLU saw improvements even 

with BN and Swish as baseline, it shows there is headroom. Another practical point is training 



stability in very deep nets – one might need to ensure the distribution of activations doesn’t become 

too heavy-tailed or something due to a weird learned activation early on. Gradient clipping or BN 

can mitigate that if it arises. 

Generalization Outside Vision: Our focus was mainly on vision datasets, but adaptive activations 

might benefit other domains. For example, in reinforcement learning or control, neural networks 

sometimes need to output in specific ranges or handle varied input scales. A learned activation could 

in principle adapt to those demands better than a fixed ReLU. Or in generative models (GANs, VAEs), 

the activation function might influence how well the network can model distributions (e.g., a non-

monotonic activation might allow a single neuron to model a multi-modal distribution when used in 

a certain architecture). These are speculative but plausible areas to test. 

Limitations: One limitation of our current SANN approach is that it assumes scalar (1D) activation 

functions. Each neuron processes a scalar and outputs a scalar. In standard nets, that’s fine because 

each neuron’s pre-activation is scalar. But one could imagine extending the notion of activation to a 

vector function: e.g., a group of neurons could jointly apply a multi-dimensional activation. This 

would allow modeling interactions between neurons at the nonlinearity stage (some works like 

“channel-out” tried something akin to this where an activation could drop entire channels). We did 

not explore this; it increases complexity significantly and strays into territory of “learnable layer” 

which is essentially another linear layer, losing the meaning of simple neuron. Our stance is that per-

neuron scalar functions are a sweet spot of simplicity and flexibility. 

Another limitation is that our method still requires choosing $S$. If one chooses too low, you cap 

flexibility (though still often better than 0 which is ReLU). If too high, you introduce many 

parameters to fit, which could overfit or slow down training. Ideally, one might like the model to 

determine the needed complexity. Possibly one could start with a higher $S$ and prune unused 

segments (if $a$ stays near zero or two breakpoints coalesce, etc.). Some research in PWLU did 

attempt to optimize the distribution of breakpoints, effectively using fewer if not needed (non-

uniform spacing). In the future, one could consider a mechanism where hinges can be added or 

removed during training based on error metrics (like a growing network that adds an extra hinge if 

the fit is not good enough). 

Summary of Key Insights: The experiments and analysis indicate that: 

• Each neuron’s learned activation tends to specialize (some remain ReLU-like, others take on 
new shapes) to benefit the network. 

• The network doesn’t collapse to trivial or pathological configurations; it uses the additional 
freedom judiciously. 

• There is a tangible performance gain by learning activations, validating our hypothesis that 
fixed activations are suboptimal in some cases. 

• Concerns about overfitting can be mitigated with standard techniques, and the capacity 
increase is not drastic relative to typical model sizes. 

• SANNs effectively unify and generalize many previous activation functions. For example, 
PReLU is a special (very limited) case of SANN with $S=0$ but learnable slope for $x<0$ (and 
fixed breakpoint at 0). APL is essentially SANN in a specific implementation. Swish is a 
smooth function that SANN could approximate (Swish is not piecewise linear, but with 
enough segments a SANN neuron could approximate the $x\sigma(x)$ curve if it’s beneficial, 
or emulate it piecewise). 



Thus, SANN provides a framework that could be considered a drop-in replacement for ReLU layers 

in most networks, strictly adding capability. The cost is minimal in computation and moderate in 

conceptual complexity. This could encourage its adoption in specialized scenarios where every bit of 

accuracy counts (assuming practitioners are comfortable with an expanded parameter set). 

 

Future Work 

The promising results of Self-Activating Neural Networks open up several avenues for future 

research and development: 

• Extending to Different Architectures: As discussed, a natural next step is to apply SANN to 
architectures beyond feed-forward CNNs/MLPs. For Transformer models, introducing 
learned activation functions in the feed-forward layers (which are typically two-layer MLPs 
with ReLU/GELU) might improve their modeling capacity. It would be interesting to see if 
this yields improvements in language modeling or translation tasks. Similarly, experimenting 
with Graph Neural Networks (GNNs) by giving each graph convolution or message-passing 
neuron a learnable activation could allow the network to better adapt to the heterogeneous 
scale of graph inputs (some neurons might need to saturate for large degree nodes, others 
not). We anticipate that any domain where neural networks are used could potentially 
benefit from this added flexibility, though each requires careful tuning to ensure stability 
(for instance, in RNNs, controlling the range of learned activations to maintain the 
exploding/vanishing gradient balance might be necessary). 

• Dynamically Allocating Activation Complexity: Instead of fixing $S$ (the number of hinge 
segments) beforehand for all neurons, one could develop a method to allocate more 
complex activation functions to specific neurons as needed. For example, during training, if a 
neuron’s output is found to consistently have a multi-modal distribution or if the error 
gradient indicates it’s unable to fit a pattern, the model could add an extra hinge to that 
neuron. This is somewhat analogous to growing a decision tree: add complexity where 
needed. Conversely, if a hinge’s contribution ($a$) remains very small, the model could 
remove it to simplify. This kind of adaptive model complexity could keep the parameter 
count minimal while still providing flexibility where it yields the most benefit. Techniques 
from network pruning or growth (Liu et al., 2019 on slimmable networks, for example) might 
be repurposed for this. 

• Smoothing and Higher-Order Continuity: While piecewise linear was our choice for 
practicality, one could consider smoother parameterizations for activation functions. Spline-
based activations could ensure $C^1$ continuity (continuous first derivative), which might 
be advantageous for certain optimization methods or for modeling smoother functions (for 
example, physical systems where response is expected to be smooth). Learning cubic spline 
coefficients per neuron is not much more complicated (perhaps a bit more parameters per 
segment, but one could still restrict to a few segments). Another alternative is the Padé 
Activation Unit (PAU) approach, which learns a rational function $f(x) = \frac{P(x)}{Q(x)}$ 
(polynomial numerator and denominator). Rational functions can approximate a wide 
variety of shapes and are smooth except at poles. They reported strong results in some 
contexts. However, rational functions can blow up if poles come into play, so piecewise 
linear might be safer in bounded domains. 

• Understanding Learned Representations: Future work can delve deeper into analyzing why 
certain neurons learn certain activation shapes. Is there a pattern that neurons in early vs 
late layers follow (e.g., earlier might remain near-linear, later become more nonlinear)? 



Does this correspond to known phenomena like early layers extracting general features vs 
later layers more task-specific features? If we see later layers using more non-monotonic 
activations, it might suggest they are creating more complex decision boundaries. 
Additionally, analyzing if there’s correlation between a neuron’s role (say, a neuron 
detecting a certain pattern) and its activation shape could lead to understanding if specific 
activation shapes are more suitable for detecting particular features (like edge detectors 
might prefer nearly linear or slightly saturating, whereas detectors that signal the absence of 
something might have a bump shape – high output when feature is either very low or very 
high). 

• Regularization Techniques Specifically for Activations: We introduced some ideas like $L1$ 
on $a$. This could be taken further. Perhaps one could constrain the total variation of the 
activation function to avoid very wiggly shapes. There’s a concept in function approximation: 
minimize second derivative or something to ensure smoothness. In piecewise linear, 
minimizing the sum of absolute differences between adjacent segment slopes would 
encourage fewer kinks (it would encourage $a$ values to cancel out or be zero). This is akin 
to a “smoothness prior” on the activation shape. If one expects the underlying relationship 
to be monotonic or convex, one could even regularize toward that (like add a penalty if the 
function becomes non-monotonic or non-convex). Such domain knowledge can be injected if 
available. 

• Optimization Improvements: Although we found simple gradient descent to work, there 
might be ways to improve the training of activation parameters. For example, perhaps using 
second-order information or a custom schedule (like slower learning rate initially, faster 
later as weights settle) could lead to even better outcomes. Another idea is to occasionally 
fine-tune activation parameters with weights fixed (like an inner loop optimization) – 
treating it a bit like an alternating optimization problem. This might find better local 
configurations for the activations. However, alternating might slow training; it would only be 
worthwhile if it escapes a bad local optimum. 

• Combining with Automated Machine Learning (AutoML): AutoML algorithms often tune 
hyperparameters including activation function choice. With SANN, instead of discrete 
choices, an AutoML algorithm could tune the hyper-hyperparameters like initial $S$ or 
regularization strength on activation parameters. Essentially, we shift the search space from 
a handful of activation types to a continuous space of shapes, which might be easier to 
explore via gradient descent but still could be guided by automated meta-learning. For 
instance, one could use reinforcement learning to adjust $S$ per layer or to decide if a 
neuron’s activation should be constrained or free. 

• Applications in Continual Learning: We hypothesize that allowing neurons to adapt their 
activation might help in scenarios where a network trained on one task is adapted to 
another (without catastrophic forgetting). Typically, one might fine-tune weights; but 
perhaps fine-tuning activation shapes could give an extra degree of freedom to adapt 
functionality without completely changing weights (which could disturb old tasks). If each 
neuron can slightly alter how it responds, maybe the network can accommodate new tasks 
while preserving old ones better. This is speculative but worth investigating. 

• Biological Plausibility: On an abstract note, neurons in the brain are often modeled with 
fixed activation functions (like a threshold firing rate). But biologically, neurons can 
modulate their response curves through various mechanisms (synaptic plasticity, 
neuromodulators). One could draw inspiration or attempt to relate SANN to how biological 
neurons might tune their input-output response over time or context. This might lead to 
neurally plausible adaptive activation models, or conversely, insights from neuroscience 
could suggest better parameterizations for artificial neurons. 

• Software Implementation: As part of future engineering work, creating user-friendly 
implementations (perhaps a layer class in PyTorch or TensorFlow) for self-activating units 



would help adoption. Ideally, it would allow specifying $S$, initialization options, and handle 
the broadcasting for conv layers. This would enable the community to easily plug this into 
different models and benchmark tasks. 

In conclusion, Self-Activating Neural Networks present many exciting directions. They challenge the 

convention of a static nonlinearity and invite us to rethink what “architecture” means – if the 

boundary between weights and activations is blurred, the network can partially reconfigure itself 

internally for the task. This could become one piece in the broader trend of making networks more 

self-tuning and data-dependent in their structure, alongside techniques like architecture search and 

meta-learning. Our future work will explore these directions and we hope others will build upon 

these ideas to further improve deep learning models. 

 

Conclusion 

In this work, we presented Self-Activating Neural Networks (SANN), an architecture in which each 

neuron learns its own activation function. We introduced a concrete implementation using 

piecewise-linear activation functions parameterized by learnable slope and breakpoint parameters 

per neuron. This approach generalizes and subsumes many existing activation functions, allowing 

each neuron to adapt from ReLU-like behavior to more complex or subtle nonlinear responses as 

needed by the data. Through theoretical arguments and practical experiments, we demonstrated 

the following key points: 

• Feasibility: SANNs can be trained end-to-end with standard gradient-based optimization. 
The additional parameters (activation slopes and breakpoints) receive meaningful gradient 
signals and converge to sensible values. Our experiments on MNIST and CIFAR-10 showed 
that training dynamics remain stable and efficient when activation functions are learned 
alongside weights. 

• Enhanced Expressiveness: Each self-activating neuron can implement a richer class of 
functions than a fixed activation neuron. We showed examples of learned activation shapes 
that go beyond traditional functions (including non-monotonic curves). Theoretically, a 
single neuron with $S$ learnable segments can replicate the function of a sub-network of 
fixed neurons, indicating a potential for networks to represent complex mappings with 
fewer neurons or layers. We proved (via prior results) that our parametrization can 
represent any piecewise-linear function (under mild conditions) given sufficient segments, 
underscoring that we are not limiting the function space compared to multi-layer 
constructions. 

• Performance Gains: Empirically, networks with self-activating neurons outperformed their 
fixed-activation counterparts. The improvements were modest but consistent on the tasks 
we tried (e.g., ~1–2% absolute accuracy gain on CIFAR-10 with a small CNN, and ~0.8% on 
MNIST with an MLP). These gains were achieved with only a small increase in model 
complexity. Importantly, the SANN models did not show signs of severe overfitting despite 
their greater flexibility; in fact, they often achieved better generalization, suggesting that the 
model was able to find a more appropriate functional form for the data, rather than just 
memorizing it. 

• Practical Implementation: We discussed how to integrate SANN into typical network 
architectures, covering initialization (starting from ReLU), computation (using vectorized 
ReLU operations for hinges), and parameter overhead (negligible in most scenarios). We also 



considered compatibility with normalization and other common practices. These details 
indicate that deploying SANN in existing pipelines is straightforward. 

• Regularization and Control: We analyzed the potential risks of giving neurons too much 
freedom, such as overfitting or instability, and suggested remedies. Simple weight decay 
appeared to suffice in our tests, but we outlined additional measures (like L1 penalties on 
activation parameters) that can further secure the model against unwanted complexity. The 
structure of piecewise-linear functions inherently limits extreme oscillations if $S$ is small. 

Overall, our results support the conclusion that allowing neurons to learn their own activation 

functions is a viable and beneficial strategy in neural network design. This moves us a step closer to 

truly optimizing all aspects of a network’s function during training, rather than fixing certain 

components arbitrarily. In a sense, the network’s architecture becomes more fluid – a standard 

network has a fixed nonlinearity and learns only linear combinations of features, whereas a self-

activating network can also nonlinearly warp feature representations at the neuron level as it learns. 

This research contributes to the This research contributes to the ongoing effort to make deep neural 

networks more adaptive and data-efficient. By enabling each neuron to learn its own activation 

function, we have shown that it is possible to achieve higher accuracy and flexibility with minimal 

overhead. Self-Activating Neural Networks blend the boundary between architecture design and 

learning, empowering models to optimize their nonlinearities from data. Our findings suggest that 

relinquishing the constraint of a fixed activation function can lead to more powerful models and 

opens up new possibilities in network optimization. We hope this work will inspire further 

explorations into learned activation functions, dynamic architectures, and other mechanisms that 

allow neural networks to self-organize and self-tune their behavior. Future studies will extend these 

concepts to more complex tasks and architectures, potentially making learnable per-neuron 

activations a standard component in deep learning practice. 
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